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| ABSTRACT

Traditional estimates of health risk are typically inflated, particularly if cancer is the
dominant endpoint and there is fundamental uncertainty as to mechanism(s) of action.
Risk is more realistically characterized if it accounts for joint uncertainty and
interindividual variability after applying a unified probabilistic approach to the
distributed parameters of all (linear as well as nonlinear) risk-extrapolation models
involved. Such an approach was applied to characterize risks to potential future
residents posed by trichloroethylene (TCE) in ground water at an inactive landfill site
on Beale Air Force Base in California. Variability and uncertainty were addressed in
exposure-route-specific estimates of applied dose, in pharmacokinetically based
estimates of route-specific metabolized fractions of absorbed TCE, and in corresponding
biologically effective doses estimated under a genotoxic/linear (MA;) vs. a
cytotoxic/nonlinear (MA) mechanistic assumption for TCE-induced cancer. Increased
risk conditional on effective dose was estimated under MA_ based on seven rodent-
bioassay data sets, and under MA. based on mouse hepatotoxicity data. Mean and
upper-bound estimates of combined risk calculated by the unified approach were <10
and <10™, respectively, while corresponding estimates based on traditional
deterministic methods were >10° and >10% respectively. It was estimated that no TCE-
related harm is likely occur due any plausible residential exposure scenario involving
the site. The unified approach illustrated is particularly suited to characterizing risks

that involve uncertain and /or diverse mechanisms of action.



1. INTRODUCTION

This report describes methods and results pertaining to Phase 2 of a study
involving quantitative consideration of joint uncertainty and interindividual variability
in risk to hypothetical future residents posed by trichloroethylene (TCE) in ground
water at the inactive landfill Site LF-13 on Beale Air Force Base in California. The
background of this study is discussed below, followed by summaries of the rationale for
this study’s focus on quantitative analysis of joint uncertainty and variability, of the
technical hurdles posed by undertaking such an analysis in a way that explicitly
addresses carcinogenic dose-response of TCE in view of fundamental ﬁncertainty
concerning its carcinogenic mode of action, and finally of the study goals of Phase 2 of
the analysis undertaken of risk posed by TCE at Site  LF-13. Specific methods used to
address the latter goals are presented in Section 2 of this report. Results obtained by
applying these methods are presented in Section 3, followed in Section 4 by a discussion
of the results obtained. References cited in this report are listed in Section 5. Appendix
1 supplies mathematical details concerning the “method of moments” used throughout
in this report to make assumptions about lognormal variates. Finally, Appendix 2
documents of all calculations performed for this study.

The general background of the present study and its Phase-1 counterpart is
provided in Section 1.1 below, followed by: a summary of the rationale for the
emphasis in this report placed on quantitative analysis of joint uncertainty and
variability (Section 1.2), a discussion of the present fundamental uncertainty pertaining
to mechanism(s) of action for TCE-induced cancer (Section 1.3), issues involving
quantitative analysis of joint uncertainty and variability in dose-response for TCE-

induced cancer (Section 1.4), and the specific goals of the present report (Section 1.5).

1.1. Background

Traditional point estimates of risk are calculated deterministically using worst-case
assumptions for some or all input parameters, in a way that does not quantitatively
account for uncertainty and interindividual variability pertaining to these parameters.
Traditional point-estimates of risk are thus typically inflated and health-conservative,
particularly if the cancer is the dominant endpoint and there is fundamental uncertainty

as to mechanism(s) of action. Risk is more realistically characterized if it accounts for



joint uncertainty and interindividual variability after applying a unified probabilistic
approach to the distributed pé{rameters in all (linear as well as nonlinear) risk-
extrapolation models for all (cancer as well as noncancer) endpoints involved. The
present case study was designed to address the problem that no such unified
probabilistic approach has never been developed or demonstrated. The case study
addresses inactive Landfill Site LF-13 on Beale Air Force Base in Califbrnia, where
groundwater contaminated with trichloroethylene (TCE) has moved beyond the site
boundary. Soil-vapor extraction and air-stripping treatment of groundwater have been
undertaken to reduce concentrations of TCE and other volatile organic coﬁpounds in
ground water beneath Site LF-13 (URSGWC, 1998). Site LF-13 is located in currently
rural area of the Sacramento Valley of California, where groundwater wells are the
principle source of domestic water supplies. The present analysis was undertaken to
provide a realistic characterization of hypothetical TCE-related risks associated with
potential future domestic/residential uses of groundwater from beneath Site LF-13, in

view of the possibility that residential populations may eventually occupy lands
adjacent to the site.

This study was conducted in two phases. Phase 1 focused on the impact of joint
uncertainty and interindividual variability (JUV) on estimates of combined TCE
exposure via different exposure pathways (Daniels et al., 1999). Uncertainty here refers
to an absence of measurement data or incomplete knowledge; interindividual
variability (or “variability”) here refers to true differences or heterogeneity in an
empirical, risk-related characteristic (e.g., physiological differences) among individuals
in a population (Bogen and Spear, 1987; NRC, 1994). Although results of the Phase 1
analysis were presented as a characterization of risk rather than exposure, risk was
estimated in that analysis simply as the product of estimated combined exposure (in
mg kg™ d?) and carcinogenic potency (in kg d mg™), where the latter potency factor was
taken to be a constant. Thus, JUV in risk characterized in Phase 1 reflected only JUV in
estimated exposure, and in no way addressed JUV associated with TCE
pharmacokinetics, dose-response, alternative mechanisms of toxic action, or multiple
toxic endpoints. TCE concentration in Phase 1 was estimated based on groundwater-
monitoring data for a well on Site LF-13 near the possible location of a future

groundwater extraction and distribution system (Purrier, 1997). After considering



concentration uncertainty and JUV in potential multi-route exposures to TCE from Site
LF-13 ground water, corresponciing JUV in risk was characterized and compared to
corresponding risk estimators that were calculated using traditional deterministic
methods (Daniels et al., 1999). A

Phase 2 of the study described above is the subject of the present report. Phase 2
involved the development of new methods allowing additional information to be
integrated into a Phase-1-type TCE risk assessment for Site LF-13. This additional
information involves JUV in predicted risk conditional on route-specific TCE exposures.
As further explained below, this was accomplished by combining exposure
distributions and methods presented in the Phase-1 study with TCE-related
pharmacokinetic and dose-response methods and information developed in the present

study, to provide an improved characterization of TCE-related risk associated with Site
LF-13 at Beale AFB.

1.2. Importance of Quantitative Analysis of Joint Uncertainty and Variability

This study focuses on integrating information on joint uncertainty and
interindividual variability JUV) to obtain more meaningful and more realistic estimates
of exposure and risk. In the report, Science and Judgment in Risk Assessment, the National
Research Council (NRC) emphasized the importance of distinguishing clearly between
uncertainty (i.e., lack of knowledge) and interindividual “variability” (i.e.,
heterogeneity or differences pertaining to people at risk) in risk assessment (NRC,
1994). Uncertainty in characterized risk reflects the extent to which a risk estimate is
likely to be erroneous, due to gaps in data and/or theory that imply statistical and/or
model-specification error. Interindividual variability in characterized risk reflects the
extent to which a risk is unequally imposed on members of the population at risk.
While uncertainty reduces the confidence or reliability that can be placed in a risk
estimate, variability can be viewed as a measure of perceived unfairness or inequity
represented by the distribution of imposed risks. Because reliability and equity issues
are clearly related to perceived and/or statutorily defined risk acceptability criteria,
both these dimensions may be relevant to risk management policy decisions.

Quantitative characterization of joint uncertainty and variability (JUV) in risk is a

way to address risk-related uncertainty and variability concisely and explicitly to



facilitate risk management decisions. When JUV is addressed quantitatively in the
input distributions used to characterize the inputs (e.g., on ambient concentration,
uptake, and dose-response) of a risk assessment, the distinction between uncertainty
and variability ought to be maintained rigorously throughout the analytic process so
that uncertainty and variability can be reflected distinctly in the calculated risk. This

recommendation was expressed by the NRC (1994, p. 242) as follows:

“A distinction between uncertainty (i.e., degree of potential error) and
inter-individual variability (i.e., population heterogeneity) is generally
required if the resulting quantitative risk characterization is to be
optimally useful for regulatory purposes, particularly insofar as risk
characterizations are treated quantitatively. The distinction between
uncertainty and individual variability ought to be maintained rigorously
at the level of separate risk-assessment components (e.g., ambient

concentration, uptake, and potency) as well as at the level of an integrated
risk characterization.”

If no distinction is made between uncertainty-related and heterogeneity-related
distributions associated with inputs to a given risk calculation, then the resulting
distribution necessarily reflects risk to an individual selected at random from the
exposed population (Bogen and Spear, 1987). By definition, this résulting distribution
cannot be used for any regulatory decision intending to address equity issues by
focusing on risk borne by relatively more sensitive and/or relatively more highly
exposed members of the population at risk. Another advantage of distinguishing
between uncertainty and variability is that it permits one to estimate the uncertainty in
the risk to the individual who is “average” with respect to all characteristics that are
heterogeneous among individuals at risk. Only the latter quantity can be used to
estimate corresponding uncertainty in predicted population risk (i.e., uncertainty in the
predicted number of cases), and thus, in particular, to estimate the likelihood of zero
cases (i.e., the likelihood that remediation of the exposure scenario considered will have

no positive impact whatsoever on public health) (Bogen and Spear, 1987).

1.3. Uncertainty in Mechanism(s) of Toxic Action

Liver is clearly a target tissue for TCE-induced cancer based on lifetime bioassay
data on chronically exposed mice; relatively large acute, subchronic, or chronic TCE
exposures are hepatotoxic in multiple species; and hepatocellular toxicity in mice about

the most sensitive TCE-induced noncancer (but possibly cancer-related) endpoint



(Bogen and Gold, 1997; Bogen et al., 1988; EPA, 1985). DNA-binding and weak
mutagenicity associated with TCE metabolites after TCE administration indicates that
genotoxicity may be responsible for some or all TCE-induced cancer (Bogen and Gold,
1997; Fahrig et al., 1995). Two TCE metabolites in particular, trichloroacetic acid (TCA)
and dichloroacetic acid (DCA), both induce and promote liver tumors in a mouse strain
(B6C3F1) which is positive for TCE-induced liver cancer, whereas liver tumors did not
appear in rats exposed to either TCE by gavage or to TCA via drinking water (Bogen
and Gold, 1997; Bull et al., 1990; DeAngelo et al., 1997; DeAngelo et al., 1991; Herren-
Freund et al., 1987; Pereira, 1996; Pereira and Phelps, 1996). DCA in paréicular was
found recently to be weakly mutagenic in mouse lymphoma cells with a mutagenic
potency similar to the classic mutagen ethyl methanesulfonate, whereas only very weak
mutagenic activity was detected using either the major reactive TCE metabolite, chloral
hydrate (CH), or its breakdown product TCA (Harrington-Brock et al., 1998). Initial
studies found DCA to be more reactive and toxic than TCE, and thus more likely to
account for observed TCE-induced cancer in bioassay mice (Larson and Bull, 1992a-b;
Templin et al., 1993). However, more recent studies that controlled for ex vivo formation
of DCA during sample preparation indicate that very little, if any, DCA was actually
produced in TCE-exposed B6C3F1 mice, imply the same for humans as well, and

conclude that DCA is unlikely to explain TCE-induced mouse tumors (Andersen et al.,
1998; Merdink et al., 1998).

‘Correlations between hepatotoxic indicators induced by reactive TCE metabolites
and precursors to TCE-induced liver tumorigenesis provide substantial, but not
definitive, support a cytotoxic mechanism of TCE-induced carcinogenic action (Bogen
and Gold, 1997). Hepatotoxic lipid peroxidation was found to be induced by TCA in
mice and rats, but mice were found to be more sensitive than rats (Larson and Bull,
1992a). This differential sensitivity to a TCA-induced cytotoxic endpoint is consistent
with a cytotoxicity-based explanation of TCE-induced liver tumors in mice but not rats.
A more recent study of lipid peroxidation induced in B6C3F1 mouse liver concluded
that the amount of such peroxidation induced by “TCA equaled that induced by CH,
whereas that from [trichloroethanol, another major, but less toxic and reactive, TCE
metabolite] was 3- to 4-fold lower, suggesting that metabolism of CH to TCA may be
the predominant pathway leading to lipid peroxidation” (Ni et al.,, 1996).



Lipoperoxidation-induced oxidativé stress may explain or correlate with the induction
of hepatocellular replicative DNA synthesis and hepatocellular proliferation that has
been observed in TCA-exposed B6C3F1 mice (Dees and Travis, 1994). Increased cell
proliferation, in turn, either alone or in combination with genotoxic conditions, has long
been considered sufficient to explain increased rates of cancer in view of biologically
based mechanistic cell-kinetic multistage cancer theory, as well as based on
experimental, epidemiological and clinical observations (Ames and Gold, 1990a; Ames
and Gold, 1990b; Ames et al., 1993,1995; Armitage and Doll, 1957; Bogen, 1989; Cohen

and Ellwein, 1990,1991; Moolgavkar, 1983; Moolgavkar and Knudson, 1981;
Moolgavkar et al., 1988).

Statistical considerations support rejecting lung as a significant target site for TCE~
induced cancer in rodents (Bogen and Gold, 1997). The remaining major site for cancer
induced experimentally by chronic TCE exposure is the rat (but not mouse) kidney,
based on National Toxicology Program (NTP) bioassays all judged to be “inadequate”
after NTP review, with mild to severe renal toxicity observed at every non-control dose
level in every species/sex combination in the bioaSSays (Bogen and Gold, 1997; NTP,
1988,1990). These NTP rats studies nevertheless provide the best available bioassay
data on TCE-induced renal tumors plausibly relevant to humans (Bogen and Gold,
1997; Bogen et al., 1988; EPA, 1985). The rat tumor data are consistent with a cytotoxic
mechanism of action for renal carcinogenesis, although mutagenicity of renal TCE-
metabolites such as S-(1,2-dichlorovinyl)-L-cysteine (DCVC) indicates that genotoxicity
may also play a role (Bogen and Gold, 1997; Fahrig et al., 1995). Interestingly, while
subchronically administered TCA and acutely administered DCVC were both found to
be nephrotoxic and to induce cell proliferation in rat kidney tubules, the DCVD-
induced response in mice was much more pronounced in mice (for which species there
is no evidence of TCE-induced kidney tumors) than in rats (for which species evidence
exists indicating TCE-induced kidney tumors) (Acharya et al., 1997; Eyre et al.,, 1995).
Consequently, the same issues regarding uncertainty in the mechanism of TCE-induced
hepatocarcinogenicity apply also to the issue of mechanism underlying evidence, such
as it is, for TCE-induced renal tumors.

EPA has not explicitly endorsed the quantitative combination of “model”

uncertainty with other types of uncertainty in cancer risk assessments for compounds



like TCE (EPA, 1996), consistent ,wii‘:h a recent NRC recommendation against this type
of quantitative treatment as op};bsed to narrative/qualitative comparisons of model-
specific analyses (NRC, 1994). However, the fact that environmental carcinogens like
TCE pose risks that are relatively delayed and anonymous compared to, say, more
immediate risks that demand accountable triage decisions, hardly justifies a
suppression of analytic clarity. Moreover, there is no logical merit to the distinction
between “model” and “parameter” uncertainty. As the NRC report itself points out, the
former is logically equivalent to the latter when incorporated into a suitably general
model that specifies, through values assigned to one or more uncertain parafneters, any
particular but uncertain model characteristics (i.e., substructures) of concern (NRC,
1994; p. 187).

1.4. Technical Issues Posed by Quantitative Analysis of Joint Uncertainty and
Variability in Dose-Response for TCE-Induced Risk

~ In view of the issues discussed above, there were several technical issues that had

to be addressed in this study due to its primary focus on quantitative analysis of JUV in
dose-response for TCE-induced risk. These issues concern the lack of coordinated
methods that consistently and simultaneously address:

(a) multiple toxic (in this case, cancer and noncancer) endpoints with

potentially disparate dose-response relations,
(b) multiple plausible mechanisms of carcinogenic action,
(c) efficient treatment of pharmacokinetic relations, and

(d) integrated quantitative treatment of JUV in exposure, dose-response,
and risk calculations.

General approaches to issues (a) and (d) have been reviewed (Bogen, 1995; NRC, 1994).
Also pertaining to issues (a) and (d) are proposed methods to extend quantitative
probabilistic methods now commonly applied in cancer risk assessment to noncancer
endpoints, which involve replacing traditional uncertainty/safety factors by
corresponding empirically based, or reasonable default, probability distributions (Baird
et al., 1996; Carlson-Lynch et al., 1999; Dourson et al., 1996; Lewis, 1993; Renwick, 1993;
Slob and Pieters, 1998; Weil, 1972). Issue (b) is a major focus of the proposed U.S.
Environmental Protection Agency (EPA) guidelines for carcinogen risk assessment

(EPA, 1996), but in this regard EPA recommends a non-quantitative, narrative approach

10



that cannot possibly address ,is‘sue (d). Concerning issue (c), a number of
physiologically based pharmacoﬁkinetic (PBPK) models have been developed for TCE
(Abbas and Fisher, 1997; Allen and Fisher, 1993; Fisher and Allen, 1993; Fisher et al.,
1998; Stenner et al., 1998), and corresponding methods for efficient PBPK analysis have

been developed under different mechanistic assumptions concerning TCE-induced
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and (c), PBPK
methods for TCE have been applied under alternative mechanistic assumptions (Fisher
and Allen, 1993), but this has never been done in a way that integrates JUV information

or efficient analytic (as opposed to numerical) PBPK-calculation methods.

In recently proposed revised methods for deriving Ambient Water Quality Criteria,
the EPA indicated that a goal of these methods should be to integrate cancer and
noncancer assessments, and more specifically “to harmonize cancer and noncancer
dose-response approaches and permit comparisons of cancer and noncancer risk
estimates” (EPA, 1998; p. 59,97). To the extent this goal were achieved, these proposed
methods would provide guidance on how to address issues (a)-(d) in a unified
probabilistic approach for risk assessment. While the proposed methods do address
multiple (cancer and noncancer) endpoints and alternative (linear vs. nonlinear)
mechanisms of carcinogenic action, they do not specifically facilitate or even address
their stated goal of integrating cancer and noncancer dose-response methods to yield
comparable or aggregate measures of risk. Furthermore, this goal is unnecessarily
impeded by some of the proposed methods, including those that: (1) address dose-
response differently for noncarcinogens vs. “nonlinear” carcinogens; (2) address generic
pharmacokinetic considerations differently for noncarcinogens vs. (“linear” or
“nonlinear”) carcinogens; (3) consider non-ingestive exposure as well as human
interindividual variability in dose-response for noncarcinogens and “nonlinear”
carcinogens but not for “linear” carcinogens; and (4) yield estimates of risk for “linear”

carcinogens but do not for noncarcinogens and “nonlinear” carcinogens.

The impact of such inconsistencies on the problem of how to do unified risk
assessment for cancer and noncancer endpoints is illustrated by the issue of whether or
how to apply a toxicodynamic scaling factor to account for systematic interspecies
differences in response as a function of biologically effective dose. For noncarcinogens,

recently proposed EPA methods include a good explanation of why, in the absence of

11



relevant data, it is appropriate to apply two separate scaling factors (by default, each
equal to a factor of 3) to account for interspecies toxicokinetic and toxicodynamic
differences, respectively (EPA, 1998; p. 140):

“The rationale for the use of PBPK models is that the pharmacokinetics

and pharmacodynamics of a chemical each contribute to a chemical’s

observed toxicity, and specifically, to observed differences among species

in sensitivity. Pharmacokinetics describes the absorption, distribution,

metabolism, and elimination of chemicals in the body, while

pharmacodynamics describes the toxic interaction of the agent with the

target cell. In the absence of specific data on their relative contributions to

the toxic effects observed in species, each is considered to account for

approximately one half of the variability in observed effects, as is assumed

in the development of RfCs and RfDs [i.e., of reference concentrations and

doses, respectively]. The implication of this assumption is that an

interspecies uncertainty factor of 3 rather than 10 could be used for

deriving an RfD when valid pharmacokinetic data and models can be

applied ... .”
For carcinogens, there is agreement that animal-to-human extrapolation of
toxicokinetically equivalent effective dose may be accomplished by the use of an
appropriate, validated PBPK model if one is available, and if not, by assuming that
toxicokinetically equivalent doses scale proportional to body surface area or
(body weight)*”® (EPA, 1992,1996,1998). However, federal policy concerning
how /whether to apply an interspecies toxicodynamic scaling factor is not consistent.
For example, the Health/Risk Assessment Committee of the Integrated Chlorinated
Solvents Project (a committee comprised of representatives from four federal agencies)
held that “it is strongly arguable that the surface area correction is not a correction on
dose to allow for pharmacokinetics, but rather a correction on risk to allow for many
factors, including pharmacodynamics” (EPA, 1987a; p. 125). For “linear” carcinogens,
however, EPA has more recently proposed that no interspecies toxicodynamic scaling
factor is required for carcinogens whenever a PBPK approach has been used to account

for interspecies toxicokinetic differences (EPA, 1998).

Likewise, interindividual var‘iability in sensitivity /susceptibility per se to
environmentally induced cancer is not typically considered in risk extrapolations for
carcinogens assumed to have a genotoxic/linear-no-threshold mechanism of action
(EPA, 1996; EPA, 1998). In this respect, past practice has been to focus (implicitly) on

risk to persons who have an average level of susceptibility, when there is no reason to
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predict that the exposed populatic‘)n is one that may reflect an unusual degree of
hypersusceptibility to envirSnmentally induced cancer (NRC, 1994). For
noncarcinogens, however, a so-called “uncertainty” factor of up to 10 has traditionally
been applied “to account for the variation in sehsitivity (intraspecies variation) among
the members of the human population”; and a similar factor was proposed recently by
EPA for use with all “nonlinear” carcinogens (EPA, 1998; p. 110,122). Confusion
between uncertainty and interindividual variation also appears in proposed new
approaches to model differences in human sensitivity by probabilistic methods rather
than by the traditional use of “uncertainty” factors (Carlson-Lynch et al., 1999 ; Slob and
Pieters, 1998). Because there is little doubt that substantial human variability exists in
susceptibility to environmentally induced cancer (NRC, 1994), a truly unified
probabilistic approach to assessing risks pertaining to cancer and noncancer endpoints

clearly requires a consistent approach to intraspecies variability in dose-response.

Recent proposals for so-called “unified” or “comprehensive” approaches to risk
assessment for cancer and noncancer endpoints (Butterworth and Bogdanffy, 1999;
Gaylor et al,, 1999) fail to address the complete set of issues (a)-(d). These proposals
essentially recommend merely that a traditional safety-factor approach be used for
cancer and noncancer endpoints alike; they focus on how to define exposure levels that
‘protect against a single endpoint, rather than on how to calculate actual levels of
aggregate risk for both cancer and noncancer endpoints. Therefore, no methods or

studies exist that address the complete set of issues (a)-(d) for integrated risk
characterization.

1.5. Study Objectives
This study (Phase 2 together with Phase 1) was designed to accomplish two overall

objectives. The first overall objective was to provide to the U.S. Air Force and
regulatory agencies new quantitative procedures that address JUV in exposure and
dose-response assessment to better characterize I;otential health risk. Such methods
could be used at sites where populations may now or in the future be faced with using
groundwater contaminated with low concentrations of TCE. The second overall
objective was to illustrate and explain the application of these procedures with respect

to available data for TCE in ground water beneath an inactive landfill site that is
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undergoing remediation at Beale Air Force Base in California. The results of this case
study are intended to illustrate how the more realistic and more meaningful risk
estimates obtained using methods we describe compare to corresponding conservative
risk estimates calculated using a traditional deterministic screening—leVel approach.
Application of the methods developed in this project can lead to more reasonable and
equitable risk-acceptability criteria for potentially exposed populations at specific sites.
The specific objective of the present report is to describe consistent and coherent
methods devised to address issues (a)-(d) discussed in the previous subsection, and to
report and discuss an application of these methods, together with other methods and
information developed in Phase 1 of this project, to the specific problem of

characterizing risk posed by TCE in ground water at Site LF-13 at Beale Air Force Base.
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2. METHODS

Methods used to address joint uncertainty and interindividual variability JUV) in
risk posed by TCE contamination at Site LF-13 was calculated and characterized as
described below in subsections pertaining to: (1) the unified probabilistic approach
adopted for this analysis, (2) TCE concentration and route-specific exposures,
(3) corresponding biologically effective doses and related physiologically based
pharmacokinetic (PBPK) considerations, (4) dose-response for cancer and noncancer
endpoints, (5) characterization of joint uncertainty and interindividual variability JUV)
in risk as a function of JUV in input parameters relating to topics (2)-(4), and (6) data

analysis and computation.

Consistent with established JUV notation, an overbar (i.e,” ) here denotes
expectation with respect to heterogeneous parameters only, angle brackets (i.e., { ))
denote expectation with respect to uncertain parameters only, each subscripted U
denotes a corresponding purely uncertain variate, and each subscripted V denotes a
corresponding purely interindividually heterogeneous variate (Bogen and Spear, 1987;
NRC, 1994; Bogen, 1995). Also, each subscripted V denotes a corresponding constant
used below to estimate risk, Xy, p (in mg kg™ d™) denotes a mechanistically relevant
measure of TCE intake by the indicated exposure pathway (P) that pertains to the
indicated mechanism/mode of action (MA) for TCE-induced toxicity, and Dy, » denotes
a corresponding biologically effective dose, where, for both X and D, the subscript MA
specifies either a genotoxic (G) or cytotoxic (C) assumed mode of action, and the
subscript P indicates either an ingestion (ing), inhalation (inh), or dermal (der) exposure

pathway. Quantities related to X and D are defined below using similar subscript
notation.

Some variates defined in Daniels et al. (1999) are referred to below, denoted as they
were in that report. All constants and variates defined in this report used as input to
estimate risk are defined below and are summarized in Table 2, which appears at the
end of Methods (after Section 2.6) prior to Results (Section 3).
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2.1. Unified Probabilistic Approach

Health risk associated with residential exposure to TCE from ground water at Site
LE-13 on Beale Air Force Base in California was analyzed using the unified probabilistic
approach summarized in Figure 1. Total associated‘risk, R, was defined as the
increased individual lifetime probability of incurring a toxic (cancer and/or noncancer)
endpoint due to TCE exposure from three pathways: direct ingestion of TCE-
contaminated groundwater, dermal absorption of TCE while showering or bathing, and
inhalation of TCE volatilized from water to household air. For volatile organic
compounds such as TCE, these three pathways typically are the most significant
contributors to total daily residential intake. Each route-specific TCE intake was
converted to a corresponding biologically effective dose for each MA and toxic
endpoint considered, where this conversion was made using efficient MA-specific
forms of a human PBPK model. Route-specific effective doses were summed for each
MA to obtain (two) measures of MA-specific total effective dose (see Section 2.2). As
detailed in Section 2.4, two MAs were considered for TCE: a genotoxic MA (MAg) and a
cytotoxic MA (MA,), with both MAs considered potentially relevant to cancer risk
posed by TCE exposure, but only MA_. considered relevant to noncancer risk posed by
TCE exposure. Briefly, it was assumed that liver cytotoxicity is the most sensitive
noncancer endpoint for TCE in humans based on the most sensitive experimental
(mouse) data, that hepatotoxicity may (itself, or as the most sensitive available cytotoxic
indicator) also explain and/or contribute to TCE-induced cancer observed in animal
bioassays, and that genotoxicity may additionally explain and/or contribute to TCE-
induced cancer observed in rodent bioassays. Increased likelihoods of cancer and of
hepatotoxicity were each modeled as a MA-specific function of PBPK-based biologically
effective dose in animals. Interspecies extrapolation of pharmacokinetic differences was
obviated by consistent application of relevant PBPK models. Interspecies
pharmacodynamic differences in dose-response were extrapolated using a single
method applied to both cancer and noncancer endpoints. Intraspecies (interindividual)
variability in human dose-response was modeled identically for both cancer and
noncancer endpoints. Finally, increased risks of incurring either or both endpoints
were estimated with respect to associated JUV, and these estimates were compared to

corresponding traditional-type risk estimates obtained using deterministic methods.
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The following subsections describe the specific methods used to apply the general
approach just summarized, with respect to route-specific TCE exposures (Section 2.2),
corresponding biologically effective doses (Section 2.3), dose-response for TCE-induced
toxicity (Section 2.4), and unified risk characterization (Section 2.5).

2.2. TCE Exposure

Predicted route-specific LTWA rates (X¢ g Xgnww and X gers mg kg™ d™) of exposure
to TCE due to Site LF-13 groundwater contamination at Beale AFB were based directly
on corresponding rates (Ey,,, Ex, and Epe,,,) and associated JUV defined in Equations 1-3

of the Phase-1 report (Daniels et al., 1999). Specifically, it was assumed that,

}<G,Ing = Elng ’ (1&)
XG,der = EDerm ’ (1b)
Xein = (Vaw/Inh)Ey, , where (1)
Inh = total respiratory ventilation rate used in Daniels et al. (1999) (m® kg™ d); and
V, 129Lh™ 0.74-1 . g
= i = —— (Vi /k V. , hich: 2
alvR 1000 L b 2 IOOOLm'3( wl! g) alv m wni 2
Var = weight-normalized ventilation rate used in present study (m*h?),
V.. = non-normalized ventilation rate (L h™),
Vw: = body weight (kg), and
Va = normalized interindividual variability in V,; that is independent of

variability in Vi (unitless).

Equation 2 is an adaptation of the alveolar ventilation rate V,, defined in a validated
PBPK model for TCE in humans (Allen and Fisher, 1993). Because, as explained in
Section 2.3, this PBPK model was integrated into the UPA applied in the present study,

X Was defined in terms of V. rather than the total ventilation rate Inh used by
Daniels et al. (1999). |

Variability in Vy for U.S. adults was modeled as approximately lognormal (LN)
with an arithmetic mean (AM) of 71.0 kg, standard deviation (SD) of 15.9 kg, and
corresponding coefficient of variation (CV = SD/AM) of 0.224 (CalEPA, 1996; Finley et
al., 1994). Based on the method of moments (Aitchison and Brown, 1957) explained and
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developed in Appendix 1, the assumed AM and SD of V, imply that Vy, ~ LN(4.24,
0.221). '

Weight-normalized rates of total respiratory ventilation for U.S. adults are
approximately lognormally distributed with a CV of ~0.3 (CalEPA, 1996). As implied

by Equation 1, the non-normalized alveolar ventilation rate V,, (L h™) is approximated
as

Valvr = (12.9 L h—l) (Vw kg-l)—0.3 Valv . . (3)

The alveolar proportion of total lung volume was assumed to be nearly constant, and
consequently variability in V,, was modeled as LN with an AM of 1. Based on the
method of moments (Appendix 1), it follows that V4 ~ LN(-0.0409, 0.286). To facilitate
PBPK analyses described in Section 2.3, it was assumed that V,, V. and V ; pertain
to children as well as to adults.

Predicted daily (non-LTWA) peak TCE exposures (Xcp, in mg kg™ d™) due to Site
LF-13 groundwater contamination at Beale AFB were defined for ingestion and dermal
exposure routes as follows, in terms of X, defined above (Equations la-b) and of the
constants EF and AT and the variate ED defined in Equation 1 of the Phase-1 report
(Daniels et al., 1999):

XC,ing = [AT/ (EDXEP)]XG’mg 7 and (4&)
Xegee = [AT/(EDXEF)|Xgo , where | (4b)
ED = household exposure/residence duration used in Daniels et al. (1999) (y);
EF = exposure frequency used in Daniels et al. (1999) (d y™);
AT = averaging time used in Daniels et al. (1999) corresponding to a 70-y exposure
(d).

Predicted daily peak respiratory TCE exposure, Xc ., was similarly related to Xg
except that E;;, (see Equation 1c) was defined by Daniels et al. (1999) to refer to total
household LTWA exposure, whereas X, pertains to peak respiratory TCE exposure,
which is assumed to occur during showering (and without reference to non-shower

respiratory TCE exposures). Therefore, X ;,, was modeled as follows based on the
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method of Daniels et al. (1999) as adapted in Equation 1c, but solely with reference to
shower-related TCE exposure:

Wy ¢ V. V.,
X = V sh Y'TCE-sh C t,inh , Where 4
e *““(1000Lm-3 xAEsh) " 1d (4c)
W, = water-usage rate per person for shower (L h);

$repsn = Water-to-air transfer efficiency of TCE in the shower (unitless);
AE, = air-exchange rate in the shower or bath stall (m*h™);

C, = TCE concentration in ground water (mg L™); and

Vign = (ETgax1d) = showerduration (h);

where variability in Wy, ¢rcp.qav AEg, and ET, and uncertainty in C,, were all modeled
as previously described (Daniels et al., 1999).

2.3. Biologically Effective Dose

For reasons discussed in Section 1.3, liver was assumed to model susceptible target
tissue for TCE-induced cancer based on mouse bioassay data, and mouse hepatocellular
toxicity to model the most sensitive TCE-induced noncancer (but possibly cancer-
related) endpoint. Dose-response relations for TCE-induced endpoints were treated as
functions of corresponding mechanism- and route-specific measures of biologically
effective dose Dy,p (mg kg d) defined below. As indicated in Figure 1, PBPK and
associated JUV models used to define Dy,p as functions of corresponding TCE
exposures (Xy,p) were treated differently in view of uncertainty as to the extent to
which the MA for TCE involves genotoxic (G) processes with a plausibly linear dose-
response vs. cytotoxic/mitogenic (C) processes with a likely nonlinear dose-response.

To facilitate subsequent calculations, the following related quantities were also
calculated:

Dya = Dyaing + Dataion + Dainger + (5a)
fune = (Durr)/(Dua) - (5b)
Buny = Dyar/(Dyar) - and (5¢)
By ~ (BMA,ing ® By ® BMA,de,) ®3"' , where (5d)
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Dya = total of all pathway-specific biblogically effective doses under mechanistic
assumption MA (mg kg* d); '

Byapr = normalized biologically effective dose for pathway P under mechanistic
assumption MA (unitless);

Bya = functional (not stochastic) mean of all pathway-specific normalized
biologically effective doses under mechanistic assumption MA (unitless); and

fuap = fraction of Dy, due to pathway P (unitless);

where in Definition 5d, “~” signifies “distributed as”, and functional summation
(denoted ®) signifies not ordinary (in this case, stochastic) summation, but rather the
analytic sum of the probability (i.e., ordinate) values of each cumulative probability
distribution function (cdf) of the indicated variates conditional on a common variate
(i-e., abscissa) value, where this sum is obtained for all possible variate values.
Likewise, functional multiplication (denoted ®) in Definition 5d signifies the analogous
product operation. The order of (uncertainty- vs. variability) expectation operations in
Equations 5a-b is arbitrary in this case study, because the order was not found to have a

substantial effect on the value of <—D_MA> obtained—due principally to the linear structure

and behavior of the models used for Dy, previously described (Daniels et al., 1999).

The rationale for including both genotoxic and cytotoxic MAs into this analysis is
discussed below, followed by subsections detailing PBPK models and methods used to
calculate corresponding biologically effective genotoxic and cytotoxic doses to bioassay
animals and to humans. |

2.3.1. Uncertainty in mechanism of toxic action

As discussed in Section 1.3, there is fundamental “model” uncertainty regarding
critical mechanism(s) explaining the observed ability of TCE to increase tumor
incidence in rodent bioassays and its suspected ability to do the same in humans. This
uncertainty can be represented by the following four alternative mechanistic
assumptions (MAs):

Assumption 1 (MAy) is the traditional approach to assessing TCE cancer risk,
which presumes that TCE increases cancer risk only via one or more
genotoxic mechanisms of action, involving DNA damage that is linearly
proportional to the biologically effective concentration of one or more of

TCE’s reactive metabolites (Bogen, 1988; Bogen et al., 1988; Brown et al.,
1990; EPA, 1985; EPA, 1987a).
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Assumption 2 (MA/) is that observed TCE-induced (e.g., liver) cancer is due
entirely to increased net proliferation of spontaneous premalignant cells
elicited primarily by TCA, by a cytotoxic and/or perhaps a directly
mitogenic mechanism (Andersen et al., 1998; Bogen and Gold, 1997).

Assumption 3 (MA o) is the composite assumption that both genotoxic and
nongenotoxic mechanisms contribute to observed TCE carcinogenicity in
bioassays, i.e., that both MA and MA(. are true. However, to the extent
MAg is true, uncertainty remains as to the quantitative role played by
each mechanism involved. This kind of uncertainty is often referred to as
“parameter” uncertainty, because it is possible to reflect this as
uncertainty pertaining to a single parameter (in a sufficiently general
model) that governs the weight to be given to each of the two mechanisms
considered to be operative under MA .

Assumption 4 (MA ) is the “dichotomous” assumption that either MA or
MA_ is true, but there is “model” uncertainty as to which one of these
possibilities is true, in view of the fact that the “parameter” uncertainty

discussed above in reference to MA.,.c is quantitatively equivalent to
“model” uncertainty.

In view of evidence discussed in Section 1.4 supporting the plausibility of both MAg
and MA(, both of these mechanistic assumptions were used to define route-specific
biologically effective dose and dose-response for TCE-induced cancer. Of course, MA
was used exclusively as the basis for calculating biologically effective dose and dose-
response for TCE-induced noncancer endpoints. Below, methods used to estimate
biologically effective doses corresponding to mechanisms MAg and MA. are described,
following an explanation of the PBPK modeling approach that was adopted in this
study to accommodate both mechanisms.

2.3.2. PBPK modeling approach

A number of multi-compartment PBPK models have been developed that provide
reasonably well—vélidated descriptions of the uptake, distribution, metabolism, and
excretion of TCE*administered by various routes to mice, rats and humans (Abbas and
Fisher, 1997; Allen and Fisher, 1993; Bogen, 1988; Fisher and Allen, 1993; Fisher et al.,
1991,1998; Stenner et al., 1998; EPA, 1985; EPA, 1987b). In contrast to earlier PBPK
models describing TCE distribution, metabolism and excretion using four physiological
compartments, the more recent “second generation” models include additional
compartments to describe distribution, metabolism and excretion of TCA and of

unbound and glucuronide-bound trichloroethanol in mice and humans (Abbas and
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Fisher, 1997; Fisher et al., 1998), and to account for enterohepatic recirculation of TCA
and of trichloroethanol—glucuror{id'e (Stenner et al., 1998). Although the newer PBPK
models are more realistic, they are less convenient to incorporate into the adopted UPA
relative to earlier-type 4-compartment models. It is also not apparent that any
improved ability to fit empirical data used to validate the newer vs. the eatlier models
implies any corresponding substantial improvement in the specific measures of
biologically effective dose discussed below, namely, total metabolized TCE and peak
plasma concentration of TCA. Indeed, an earlier-type 4-compartment model for TCE in
humans appéars to provide fairly accurate predictions of the peak value, Méx(CTCA), of
TCA concentration in plasma measured in several different studies involving humans
exposed by inhalation to various air concentrations of TCE (Allen and Fisher, 1993),
whereas a corresponding “second generation” model appears to underpredict
Max(Cyc,) by up to ~40% in human subjects exposed to 50 or 100 ppm TCE in air
(Figure 8 of Stenner et al., 1998). Therefore, earlier-type 4-compartment models (Allen
and Fisher, 1993; Bogen, 1988) were used for PBPK-based calculations of biologically
effective dose in the present study, as described below. However, recently reported
experimental data on human variability in key PBPK parameter values (Fisher et al.,

1998; Lipscomb et al., 1998) was incorporated into the present analysis as discussed
below.

2.3.3. Effective genotoxic dose

Under MA;; for TCE (i.e., assuming that TCE is a “linear”/genotoxic carcinogen),
bioassay-based potency traditionally has been expressed as increased risk per unit of
PBPK-estimated total LTWA metabolized TCE per kg body weight per day, without
accounting for PBPK-related uncertainty and variability (Bogen, 1988; Brown et al.,
1990; EPA, 1985; EPA, 1987b). There is an indication this policy will likely persist (EPA,
1996). Measures of biologically effective dose, as LTWA metabolized TCE (in mg kg™ d°
") to animals in bioassays positive for TCE-induced liver or kidney cancer were obtained
from Table 4 of Bogen (1988). Similar measures of route-specific biologically effective

dose Dgp to humans under MA were used for the present analysis, namely:

Dgr = VupXgp, forP =ing, inh,order, where (6)
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Vimp = limiting fraction of total TCE intake by pathway P that is metabolized
conditional on intake sufficiently small to ensure that saturation of TCE
metabolism remains negligible (unitless).

For multi-compartment PBPK models like that of Allen and Fischer (1993), these
limiting metabolized fractions were shown previously to be

YT

. 1+ Ka ( 1 . _
Yfmjng V 7 J j , and | (7a)
v (k, 1\
Veninn = Vimaer = |14+ —2-+ , where 7b
fm,inh fm,d L ‘/Pb (Vmax ‘/hv)] ( )

Va = alveolar ventilation rate (defined in Equations 2 and 3) (L h);

Vie = therate of blood perfusion to liver (L h™);

Viw = theblood:air partition coefficient for TCE (L, L)

Vimax = maximum rate of TCE metabolism (mg h™);

K, = Michaelis-Menten affinity/saturation constant (mg L"); and

where V. is alveolar ventilation rate defined above (Equation 3), and where, for
Michaelis-Menten parameters K, and V,,, assumed to govern metabolic saturation
kinetics for TCE, the mass unit (mg) refers to TCE and the volume (L) to venous blood
exiting liver (Bogen, 1988; Bogen and Hall, 1989).

To derive human biologically effective doses under MA (as well as under MA, as
explained below), Equations 7a-b were applied assuming that: V,,, is defined by
Equation 2, Vy, = 26%x(15.0/12.9)xV,,, (Allen and Fisher, 1993), K,, = 1.5 mg L™ (i.e.,
treated as a constant) (Allen and Fisher, 1993), and that Vy, ~ N(10.2, 1.6) for males and
females combined (Fisher et al., 1998). Variability in the maximal rate of TCE
metabolism, V., was modeled as LN with

Vmax = (149 mg h—l) (‘/W/kg)_o3 VVmax ’ (8)

which adapts the definition used by Allen and Fisher (1993) to incorporate a
multiplicative factor Vy,,, reflecting V,,,-related variability, where V,,, was assumed

to have an AM of 1. Under these assumptions, Equations 7a-b are simplified to:

24



; -
Vining = {1 V[V (07700 ¥, +2.547)] } , and (9a)

-1
V= Viane [l . &[1_-2.9_%3.307]} , )

Pb Vmax

in which no more than three significant figures are implied. From Equation 9b it is clear
that Vi, i, is correlated with V. From Equation 1c, it follows that this correlation is
implied in Equation 6 defining D, as well as in Equation 15b below (in Section 2.3.4)
that defines the corresponding cytotoxic dose D¢, Note, however, that the limiting
metabolized fractions defined by Equations 9a-b are independent of body weight (V),

and thus are independent of Dy, for P = {ing, der} defined by Equation 6 (and by
Equations 15a-b below).

Based on in vitro measures of V,, for TCE using human microsomes and
hepatocytes sampled from 4 to 6 different donors (Lipscomb et al., 1998), the CV of V,,,,
was estimated to be ~0.60, which, based on the method of moments (Appendix 1)
conditional on assumed variability in V, discussed above (after Equation 2), implies
that V,,, ~ LN(-0.152, 0.551). Systematic uncertainties pertaining to Vy,, are likely to be
small relative to the combined effect of interindividual pharmacokinetic variabilities, so

uncertainty per se is not incorporated into Equations 9a-b used to define V.

Note that, conditional on the adopted PBPK model, Equations 7a-b and 9a-b remain
true regardless of any (dynamic or static) pattern of exposure(s) involved, provided that
metabolism remainsv virtually unsaturated, which in turn ensures that the
corresponding system of linked ordinary differential equations remains linear (Bogen,
1988; Bogen and Spear, 1987).

2.3.4. Effective cytotoxic dose

Under MA( for TCE, hepatocellular oxidative damage is assumed to comprise or
elicit premalignant liver-cell proliferation and consequent increased tumor risk in mice,
and is further assumed to correlate best with the daily peak value Max(Cyc,), of TCA
concentration in plasma, rather than with LTWA total metabolized TCE or related areas
under concentration-times-time curves for blood or other tissues (Bogen and Gold,

1997). Similar reliance on peak rather than LTWA metabolic yield was used for MA.-
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based risk assessment for chlorinated methanes, based on empirical evidence
supporting the former measure as the best predictor of oxidative damage (Bogen,
1990a). In the absence of dose-response data on TCA-induced rodent nephrotoxicity,
and consistent with information discussed in Section 2.4, Max(C;c,) was also taken to be
the biologically effective cytotoxic dose for potential TCE-induced kidney cancer under
MA.. It was further assumed that Max(Cyc,) is the biologically effective cytotoxic dose
for TCE-induced noncancer endpoints, so in general it was assumed that D for any
exposure pathway P is the value of Max(Cyc,) produced in response to a corresponding
exposure X.p defined in Equation 4a-c. Corresponding total effective dose (D) was (in
Equation 5a) defined as the sum of D; from all exposure pathways, as discussed below
following Equation 13b. '

In the context of low-dose risk extrapolation based on the PBPK model used here
for TCE humans, all saturable (Michaelis-Menten) PBPK relations linearize. Therefore,
this PBPK model was evaluated using an entirely analytic approach previously
described (Bogen and Gold, 1997), which is simpler yet equivalent to alternative,
relatively cumbersome numerical methods more commonly applied. By this approach
(see Equation 4 of Bogen and Gold, 1997),

dCre®) _ K KMW[ Crce(®) Vi

-V , h 10
dt Vi Ve crcg<t)+1<m) o Creat) - where 10

Crca(t)= concentration at time f of TCA in plasma (mg L7);

Cree(t)= concentration at time ¢ of TCE in venous blood exiting liver (mg L™");
Kica = neteffective fraction of total TCE intake metabolized to TCA (unitless);
Kuw = TCA to TCE molecular-weight ratio (unitless); and

Va = fraction of body weight corresponding to apparent volume of distribution for
TCA (L kg™); and
Vi = first-order rate constant for elimination of TCA from plasma (h™);

and where Vy, V..., and K, were defined above (after Equations 2, 7b, and 7b,
respectively). It was assumed that K, = 0.33 (Allen and Fisher, 1993), and the ratio
Kyw is 1.228 (see Bogen and Gold, 1997).
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Conditional on any regular pattern of peak daily TCE exposures X, that—by any
pathway P and corresponding duration V,;—are small enough to ensure that Cy(t) <<

K., for all t, Equation 10 implies that Cic4() attains a dynamic equilibrium in which

Keon Kyw Vi
Max[Cica(t)] = Dep = fFCAV gw fim, P (XC,p xld){fd—e“} , where (11)
fd " ke t,P

1-exp(~Ve Vir)
1-exp(—V,, X 24 h)

Joeq = ’ (12)
Vip = duration (<24 h) of peak daily exposure X, by pathway P (h); and

faeq = fraction of Max[Cca()] conditional on a hypothetical infinite exposure
duration that is attained at dynamic equilibrium conditional on Vg;

in which X., and V,;,,, were defined via Equations 4a-c, Vi, , was defined in
Equations 9a-b, and all other variates in Equations 11-12 (i.e., besides fy.,, V,», and Xcy)
were defined following Equation 10. Equation 11 is a multi-route generalization of
Equations 6 and 7 of Bogen and Gold (1997). Figure 2 shows how the bracketed term in
Equation 11 is well approximated by

[fia/Vie] = (24h)" +0.5053V,, + (1.6610)V2
forV,;<05h and V,,<0.1 h* (13a)

~ (24h)" +0.5053V, for V,,<05h and V,,<0.04h™ , (13b)
in which no more than three significant figures are implied.

As indicated following Equation 4c, variability in V,;,, was modeled as LN with
Vin ~LN(In 0.120, In 1.47) as previously described (Daniels et al., 1999), implying
shower (or, more generally, bathing-related water-flow) durations that virtually never
(p <10™) exceed 0.5 h. It was further assumed that V, 4, = V., as previously described
(Daniels et al., 1999), that V,;,, <0.5 h, and that V, ., V, s, and V4, are timed such that
the total effective cytotoxic exposure, D.. (defined by Equation 5a), is maximized, so as

to reflect the peak value of Max[Cyc,(t)] predicted during a lifetime of different
pathway-specific effective-exposure scenarios.
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Figure 2. Approximation of the ratio Z = (f,.,/V,p), i.e., the fraction of steady-state that
is attained under dynamic-equilibrium exposure conditions, divided by the duration
Vip of daily exposure pulses. Z (unitless) is plotted (using open points) as a function of
40 values of the (heterogeneous) TCA-elimination rate, V,,, evenly spaced between 0
and 0.1 h™. The relatively small amount of vertical variation in the plotted points
corresponds to three different values of V,;, used (0.01, 0.25, and 0.5 h) conditional on
each value of V, used. To these points was fitted the linear quadratic curve shown:
Z =(0.05053 )V, + (1.6608 h*)V, 2. For V,, < 0.04 h, the relative error of this fit using
only the linear term (0.05053 h) is <5%. :
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Based on methods used and data reported by Allen and Fisher (1993), variability in
Vi was modeled as uniformly distributed between 5.2 and 15.2%, and as being
negatively correlated with Vy, with a rank correlation coefficient of p(V,y, Vi) = -0.50;

and it was assumed that

Vie = 0.028V?V. , where (14)

V. = normalized variability in V,, that is independent of variability in Vi (unitless),

and where Vy, was previously defined (after Equation 2). It was further assumed that
variability in V. is lognormally distributed. Experimental data reported for 17 male
and female human subjects indicates that V,, has a CV of ~0.60 (Fisher et al., 1998).
Based on the method of moments (Appendix 1; see discussion concerning V..
following Equation 8), it follows that V, has an AM of 1 and that V, ~ LN(-0.152, 0.551).
Consequently, Equation 14 implies that V,,<0.030 h for virtually (>99% of) all
modeled individuals at risk. Because Viing <0.5 h is assumed as described above,
Approximation 13b is accurate (to within <2.5%), and was thus used to evaluate

Equation 11. These two equations, together with assumptions stated above, yield:

0.3
Dep = (XC,led) Vinp (0'6107VW +O.2074) , forP ={ing, der}, and (15a)
fd [
Viewn [ 7878  2.674
Doy = (X, x1d)—ish +—= , 15b
Ciinh ( C,inh ) 2 ( Ve V\gg, J ( )

in which no more than three significant digits are implied, and where: X, for
pathways P = {ing, inh, or der} were defined by Equations la-c, Vy was defined after
Equation 2, Vi, » for pathways P were defined in Equations 9a-b, V;; was defined after
Equation 10, and V, was defined after Equation 14. Note that V,4 and V,, are assumed
to be correlated (as discussed prior to Equation 14), as are V,,, and V,,, as discussed

above (in Section 2.3.3, after Equation 9b).

2.4. TCE Dose-Response

The following subsections discuss methods used to model dose-response for TCE-

induced cancer and noncancer endpoints, and associated JUV. Sections 2.4.1 and 2.4.2
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describe methods used for dose-response modeling under MAg and MA,, respectively.
Section 2.4.3 then describes the method used to incorporate uncertainty concerning the
mechanism of action for TCE-induced cancer into estimates of cancer risk as well as of

corresponding aggregate (cancer and noncancer) risk.

2.4.1. Dose-response assuming genotoxic mechanism(s)

Under MAg, linear-no-threshold extrapolation of TCE cancer risk is based on the
assumption that TCE can increase cancer risk via one or more genotoxic mechanisms of
action. These mechanisms involve DNA damage that is presumed to be linearly
proportional to the biologically effective concentration of one or more of TCE's reactive
metabolites, where potency is estimated for each bioassay in terms of a
pharmacologically based equivalent effective dose—namely, the total amount of TCE
metabolized per kg body weight per day (Bogen, 1988; EPA, 1985; EPA,V 1987b).
Effective bioassay doses Dcp and corresponding positive, malignant (plus, where
applicable, benign) tumor responses in mouse liver and rat kidney were obtained from
information listed in Table 4 of Bogen (1998) concerning seven rodent bioassay data sets
(Bell et al., 1978; Maltoni et al., 1986; NCI, 1976; NTP, 1990). The studies involved are
summarized below in Table 1. For each data set, a cdf reflecting uncertainty
(estimation-error) in estimated cancer potency (i.e., “slope factor”, or risk per unit dose),
here denoted U, (kg d mg™), was calculated as described below (Section 2.6).

- A subjective weighting scheme was then used to address uncertainty associated
with lack of knowledge concerning which of the multiple positive animal bioassay
results for TCE in rodent liver and kidney best predicts TCE cancer risk in humans,
similar to an approach previously applied to characterize JUV in cancer risk posed by
environmental exposure to chloroform (Bogen, 1995). To each species/sex-specific
~potency distribution obtained as described above, the corresponding relative weight
indicated in Table 1 was applied to obtain a single weighted-average distribution
reflecting uncertainty in tumor likelihood conditional on effective dose. (This weighted
average was obtained analytically, via calculations analogous to those indicated in
Equation 5d.) The weights used assign equal likelihood (of reflecting true carcinogenic
potency in humans) to bioassay data sets that differ: by sex within a given strain, by

strain within a given species, and by species.
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Table 1. Bioassay data sets used to estimate potency of TCE as a genotoxic/linear liver
or kidney carcinogen

No. Relative

: Tumor dose study

No. Study’ Species  Strain Sex Route’  type’ grps. weight’
1 NCI (1976) mouse B6C3F1 M gav HCC 3 1

2 NCI (1976) mouse B6C3F1 EF gav HCC 3 15

3 NTP (1990) mouse B6C3F1 M gav HCA 2 1

4 NTP (1990) mouse B6C3F1 F gav HCA 2 1.5

5 NTP (1990) rat F344 M gav RTCA 3 - 12

6 Bell et al. (1978) mouse B6C3F1 M inh HCA 3 1

7 Maltoni et al. (1986) mouse Swiss M ~ inh MH 3 6

“More detailed study-specific information appears in Table 4 of Bogen (1988).

’Lifetime bioassay exposure scenarios: gav = gavage 5x/wk in oil vehicle; inh = inhalation 6 h/d 5x/wk.
Tumor types: HCC = hepatocellular carcinomas; HCA = HCC or hepatocellular adenomas; RTCA =
renal tubule-cell carcinomas or adenomas; MH = malignant hepatomas.

Assigned a priori relative study weight (see text).

Animal-to-human extrapolation of toxicokinetically equivalent effective dose was
done by using an appropriate PBPK model as described above, so no additional factor
was employed in this regard in accordance with currently proposed policy (see
Section 1.4). An uncertain factor Uy, was used to account for interspecies
toxicodynamic dynamic differences between rodents and humans (i.e., in increased
likelihood of cancer per unit effective genotoxic dose). Analogous to toxicodynamic
factors recommended recently by EPA for noncarcinogens and “nonlinear” carcinogens
(EPA, 1998), but using a probabilistic approach as previously proposed for noncancer
endpoints (Carlson-Lynch et al., 1999; Slob and Pieters, 1998), it was assumed U,qy, is
lognormally distributed, has a GM of 1 (i.e., is as likely as not to exceed 1), and is
unlikely (p <0.01) to exceed a value of 3. A similar factor V4, used to reflect
intraspecies toxicodynamic variation was assumed to have an AM of 1 and to be
unlikely (p < 0.01) to exceed 10. By the method of moments (Appendix 1), it thus was
assumed that Uy, ~ LN(0, 1.60) and V', ~ LN(0.700, 2.33).

Combining the dose-response factors discussed above, increased risk R; under

MA;was defined using a low-dose-linear multistage risk-extrapolation model as
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R = 1- exp{_I:UpotUtdy; Viayn <—Dg> ZfG,PBG,P :|} ’ with  (16a)

P={ing,inh,der}
R, = 1- exp(—Umetdyn (D_G) _B_G) , and (16b)
<RG> =~ 1- exp{—'l:<Upot ><Utdyn>‘};dyn <D_(;>p ( z;lth,P<BG,P >:|} | ’ (16C)
=(ing,inh,der}

in which U, U4, and th'yn were defined above in this subsection, and the remaining

‘variates were defined in/after Equations 5a-b with reference to Equation 6. In
Equation 16b, B; = B;, because (conditional on Equations 1a-c, on Equation 6, and on

all heterogeneous variates involved in Bcp), uncertainty in By is due entirely to

uncertainty in the variates ED and C,, (defined after Equations 4b and 4c, respectively)
that are both independent of pathway P. Note that the (BG,P> variates in Equation 16c

are correlated (see Section 2.6). Equations 16b-c are first-order approximations (see
Bogen and Spear, 1987). However, for extrapolation of risks < 10® the functions

involved are effectively linear, so the approximations entail only negligible loss of
accuracy.

2.4.2. Dose-response assuming cytotoxic mechanism(s)

The ability of TCE to induce cancer under MA. was assumed to arise from TCA-
induced cytotoxicity /mitogenicity indicated by increased formation of thiobarbituric-
acid-reactive substances (TBARS), as previously suggested (Bogen and Gold, 1997).
Absent better data, increased TBARS elevation above background was modeled using
data on male B6C3F1 mice administered a single gavage dose of 0, 100, 300, 1000, or
2000 mg TCA per kg body weight in buffered water, and corresponding measured peak
TCA concentrations in plasma, Max(Crc,) (Larson and Bull, 1992a). Multiple
independent interactions are likely to be involved in TCA-induced oxidative-stress.

Consequently (Aitchison and Brown, 1957), dose-response under MA. was modeled by
fitting the two-parameter LN function

Y(Arw) = Yo + 100 d)(lﬁgw(ffcﬂ) . where (17)
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Ac = administered acute TCA dose (mg TCA per kg body weight);
Y(Ac)= TBARS level induced by A (nmol malondialdehyde equiv. per g liver);

Y, = Y(0)=background TBARS level (nmol malondialdehyde equiv. per g liver);

®(z) = cumulative probabiiity distribution function (cdf) of a standard normal
(Gaussian) random variate Z, equal to Prob(Z <z);

i = location parameter (unitless); and

o = shape parameter (unitless);

to the mouse TBARS vs. Ac data (see Section 2.6), where the unit of Y(Ac) is henceforth
suppressed for convenience. The arbitrary constant (100) in the two-parameter model
(Equation 16) was used because a three-parameter LN model fit to these data did not

yield plausibly unique parameter estimates.

Raw Y(Ac) data (4 measures X 4 noncontrol dose levels) summarized by Larson and
Bull (1992) were assumed to be approximately normally distributed. Error in the
reported Y, mean (equal':to 40.0) was modeled as T-distributed with 3 degrees of
freedom, using the reported value of 4 for the SD of that AM. TBARS elevations above
the corresponding 2-tail upper 95% confidence limit on Y, were assumed to be
biologically significant in the sense of being plausibly related to TCA-induced
cytotoxicity. This upper bound on Y, shall be denoted Y, and the mouse data indicate
that Y;, = 49.4.

sig

A bootstrap approach was then used to derive the likelihood that any particular
dose is associated with a significant, potentially cytotoxic response (Slob and Pieters,
1998). Specifically, 2000 sets of {u, o} parameter-value pairs were simulated using pairs
of rank-correlated T-distributed variates {U,,, Uy} each with [(4 x 4) - 2] = 14 degrees of
freedom, together with the estimated parameters { i, 6} and corresponding SDs {s;, s,}
and product-moment correlation (r) obtained from the LN-model fit to the mouse data.
Parameter-value pairs were thus simulated as {u= I + s;Uy, 0= 6 + s,Uy}, using r as
the approximate target rank correlation between Uy, and U,,. Each of the simulated sets
of parameter values corresponds to a critical A¢ level at which a significant TBARS
response is assumed as discussed above. At the lowest A level used (100 mg kg™) in
B6C3F1 mice, it was found that Max(Crc,a) = 130 mg L™ (Larson and Bull, 1992a). For

convenience, and absent data at lower A. levels, it was assumed that
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[Max(Crca)/Arcal = [(130 mg L‘l)’/ (1‘00 mg kg™)] independent of A;,. Critical effective
doses corresponding to the 2000 simulated {g, o} parameter-value pairs were therefore
modeled as

D = (13mgLYy1o* " (tunio
= (13mgLY)1o#ta) * Grevale(nenlfol g g v e (18)
D., = acute effective TCA dose (mg TCA per L plasma); ‘
Yo = significantly elevated value of Y(A,) above Y, (unit suppressed);
U, = (for i=1,2) correlated errors distributed as Student’s T cdfs with df = 14; and

F(Dg,) = cdf of Dc, specifying the modeled likelihood of significant TBARS elevation
conditional on D,;

where Y, was defined after Equation 17, and the parameter estimates /i, s;, 6, and s,,

as well as the T-distributed variates U, and U, were all defined just prior to
Equation 18. The 2000 simulated (equally likely) D, values obtained using Equation 18
were then sorted to provide a preliminary estimate of F(D.,). Because only 2000
simulated D¢, values were used for the preliminary estimate of Fo(Dc,), D¢, values
corresponding to risk values <2001 were extrapolated from the preliminary cdf
estimate (see Section 2.6). The resulting combined (preliminary + extrapolated)
estimate of Fo(Dc,) was used to represent the risk of significant TBARS fésponse in
mouse liver conditional on D.,. Absent dose-response data on TCA-induced
lipoperoxidation or cytotoxicity in rat kidney, it was assumed that F(Dc,) also applies
to rat kidney. This assumption is probably conservative, because relation between Ac
and Max(Cyc,) was observed to be similar in rats vs. mice, whereas TCA is less effective

at inducing TBARS elevation in rats vs. mice (Larson and Bull, 1992a).

Detailed dose-response information relating chronically or subchronically
administered TCA and induced TBARS or cytotoxicity are still unavailable. Therefore,
extrapolation of D¢, to equivalent subchronic effective TCA dose, and extrapolation of
subchronic to chronic effective TCA dose (where the latter is denoted D, and is defined
by Equations 5a, 11, and 15a-b), was accomplished using the two uncertainty factors,
U, cute a0 Upanons T€SPectively. As previously suggested (Slob and Pieters, 1998), these
factors were assumed to be lognormally distributed. Based on the observation that ratio
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of lowest observed effect levels for TCE-induced lethality in B6C3F1 mice is between 2
and 3 (NCI, 1976), it was assumed that U,.,, has a GM of GM,_,,, = 3 and is unlikely
(p < 0.01) to be greater than 6. The factor U, ,q.n Was assumed by default (see Slob and
Pieters, 1998) to have a GM of GM, q0n = ~2 and to be unlikely (p < 0.01) to exceed 10.
Because many repeated daily exposures to TCE and/or its metabolite TCA are expected
to be always more (never less) toxic than fewer exposures, it was assumed that a
combined uncertainty factor (Ug,,,) extrapolates effective dose from acute to chronic

exposure conditions as follows:

D¢ (1 + Ugpon)Dca , Where (19a)

it

uchron

uacuhexusubchron (1 - (GMacute GMsubchron )—1 ) . (19b)

That is, the combined LN factor Ug,,, was assumed to have a GSD equal to that of
U, cueXUsupenron and a GM equal to one less than that of U, XU paron: BY the method of
moments (Appendix 1), it was thus assumed that U, ~ LN(In 5, In 2.12).

Animal-to-human extrapolation of toxicokinetically equivalent effective dose was
done by using an appropriate PBPK model as described above, so no additional factor
was employed in this regard in accordance with currently proposed policy (see Section
1.4). An uncertain factor U, was used to account for interspecies toxicodynamic
dynamic differences between rodents and humans, and a similar factor Vi,
were defined above (in

to reflect
intraspecies toxicodynamic variation, where Uy, and V,

Section 2.4.1, prior to Equation 16).

Combining the dose-response factors discussed above, increased risk R under
MA_was modeled as

Re

Il

FC(U tyn Vedyn (1 + Uchron) <D—c_> Zf C,PBC,PJ - with (20a)

P={ing,inh,der}

&
u

E: (Utdyn (1+ Uchron) (E) B_C) ’ and (20b)

(Rer) = &[(Utdy.,)vmy.,(l+<Uc.,m,,>)<ﬁc> ch,P<Bc,p>], (20c)

P={ing,inh,der}
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in which Ugyen, Uigyn, and Vigyn were defined above in this subsection; the remaining
variates were defined in/after Eciuations 5a-c with reference to Equations 11 and 15a-
b; and the subscript “1” in R, denotes first-order approximation. In Equation 20b,
B. =B, because (conditional on Equatibns la-c and 15a-b, and on all heterogeneous
variates involved in Bp) uncertainty in B.p is due entirely to uncertainty in the variate
C,, (defined after Equation 4c), which in turn is independent of pathway P. Note that
the (BC,P> variates in Equation 20c are correlated (see Section 2.6).

As indicated, Equations 20b-c are again first-order approximations (see text
following Equations 16b-c). In this case, however, the approximations are expected to
underestimate risk, because—in contrast to the exponentiated polynomial in Equations
16b-c—F is a rather nonlinear increasing function of effective dose (see Bogen and
Spear, 1987). At low levels of risk (< 10?), log(Fc(Dc,)) turns out to be well modeled by a
linear function of effective dose D,, as explained below (Sections 2.6 and 3.2).
Therefore, the approach of Bogen and Spear (1987) may be applied (as shown in
Appendix 2.1, pp. H-8 to H-10) to provide corresponding, more accurate second-order

approximations that were used to calculate the corresponding conditional risks under

MA::

R. = R, + %loﬁ(Um(l+Uchmn)xO.0269)5(l;—-1)(1.05+2.58) , and  (20d)
(R = (Ry) + -;—10‘3(thyn><0.0269><8.50)5(l;-—1)(86§'062 +1.02) , (20e)

in which the log-linear regression parameters a and b are defined below in the context of
Equation 23 (Section 2.6).

2.4.3. Model Uncertainty
In view of the plausibility of both MA; and MA(. (see Section 1.3), uncertainty in the

mechanism(s) of carcinogenic action for TCE was treated quantitatively, based on the
“dichotomous” mechanistic assumption (MAg ) involving both MA; and MA.
discussed above (Section 2.3). The alternative corresponding “composite” assumption
(MAg~c), which also involves both MA; and MA_. (as discussed in Section 2.3), is mofe
difficult to implement quantitatively than MA . MAg.c is more difficult to implement

36



because it requires a complete modél structure accounting for possible but unknown
interactions between the different mechanisms considered. In contrast, MAg . may be
implemented simply by assigning the component assumptions (MA; and MA,)
corresponding, complementary a priori probabilities, and using the combination of these
probabilities to reflect the (quantitatively equivalent) possibility that both MA, and
MA( are true but to unknown degrees. MAg was therefore adopted using subjective
probabilities Ug and U = (1-U) to reflect the corresponding likelihoods that MA and
MA,, respectively, reflect the “true” mechanism of TCE-induced carcinogenic action.
Consistent with our considered opinion that MA.. is at least as likely as not to explain
observed TCE-induced cancer in rodent bioassays (see also Bogen and Gold, 1997), U,
was modeled as uniformly distributed between 0 and 0.5. Therefore, using de Morgan's
rule (see NRC, 1994; Appendix I), increased aggregate risk R of incurring either a cancer

or a noncancer endpoint was modeled as
R = 1-(1-URe(1-RY, (21)

in which Ug was just defined; R and R were defined by Equations 16a and 20a,

respectively; and correlations between R and R were incorporated (see Section 2.6).

2.5. Risk Characterization

Increased health risk and related JUV associated with residential exposure to TCE
from ground water at Site LF-13 on Beale Air Force Base in California was characterized
quantitatively using notation similar to those used in the Phase-1 report (Daniels et al.,
1999). Specifically, increased individual risk R defined by Equation 21 was evaluated
using established methods (Bogen, 1995; Bogen and Spear, 1987; NRC, 1994) to obtain

mean and upper-bound values of the conditional expectations R and (R), where the

cdf for R represents uncertainty in risk to a (hypothetical) person at a
population-average level of risk relative to others, and the cdf of (R) represents
interindividual variability in the expected values of risk predicted for different people.
A subscript p (0 <p <1) on either of these conditional expectations is used to denote a
100pth percentile at which the corresponding cdf is evaluated, while R,, (0<u <1,
0<v<1) is used to denote joint 100uth-uncertainty and 100vth-variability percentiles
with respect to JUV in R. Estimates of R,, were obtained jointly conditional on one of

three upper bounds u (0.50, 0.95 or 0.99) with respect to aggregate uncertainty, and on
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one upper bound (v = 0.99) with respect to aggregate variability. These R, estimators
characterize median and upper uncertainty bounds on risk to a person who is relatively
highly at risk compared to others at risk.

The JUV-explicit estimators of individual risk obtained (involving R, (R), and R,.)
were compared to traditional point-estimates of risk Ry, and ngh taken from Daniels
et al. (1999). The Ry, estimate was calculated entirely analytically, using regulatory

default values for all input variates where available; where default values were not
available, expected values were used for all uncertain variates, and upper/unlikely
bounds (e.g., 95" percentile values) were used for all heterogeneous variates. The ngh
estimate was similarly calculated using only upper/unlikely bounds for all input

variates.

Also of potential interest to stakeholders and decision makers are corresponding
estimates of population risk, that is, of the uncertain total number N of additional cases
of TCE-induced cancer or noncancer associated with population exposure to risk R. For
an exposed population of total size n, N has an expected value of (N)= n<1_2>, and the

probability p, that there will be zero additional cases (and consequently zero health

benefit from efforts to reduce R) is well approximated by the integral of the conditional
Poisson likelihood function

P = [ethnadr, 22)

in which f(r) is probability density function of the uncertain conditional expectation

Rreferred to above (in reference to R defined by Equation 21), and the compound-

Poisson rate (n R) incorporates this same conditional expectation (see Bogen and Spear,
1987; NRC, 1994; Bogen, 1995).

2.6. Data Analysis and Computation

Uncertain cancer potency U, for each animal-bioassay data set was calculated
using a computationally efficient, non-asymptotic, analytic-bootstrap method
previously described (Bogen, 1994). Briefly, potency was estimated for each bioassay

data set using least-squares polynomial-regression fits of a polynomial in LTWA

38



effective bioassay dose D¢p to 500 simulated values of -In[1 + P(D.;)], based on
observed tumor-occurrence rates P(D.;) at each level of D used, and under the
constraint that all fitted polynomial terms are 20. The polynomial degree was specified
in the usual way, as previously described (Anderson et al., 1983). Uncertainty in Uy
reflected by each data set was then modeled as the empirical distribution corresponding

to the 500 resulting fitted values of the linear polynomial term in dose.

Estimated parameter and asymptotic SD values were obtained for a lognormal

model (Equation 17) fit to mouse TBARS-vs.-A. data by Levenberg-Marquardt
minimization of X', the sum of weighted squared deviations of observed from predicted

values; corresponding goodness-of-fit was assessed as Prob(X’ > x) for x distributed as
chi-square with (# data points) — (# parameters estimated) degrees of freedom (df)
(Press et al., 1992). The weight used for each Ac level was the corresponding value s?,
where s = the SD of raw TBARS measures calculated from the SD of the corresponding
mean TBARS value reported by (Larson and Bull, 1992a).

Low-risk extrapolation of the 2000-point preliminary estimate of F-(D,) was done

by obtaining the unweighted least-squares linear regression fit of the function
logyy Fo(De,) = a+blogyDe, (23)

to log-log transformed subset of the preliminary cdf, namely, to the first 50 {log;, Dc,,
logy Fo(Dc,)} points of the preliminary cdf. New points defined in terms of the

estimated parameters {4, b} were then added to the preliminary cdf. The added points

were the 26 points {100-9% 10’} defined for y ranging from -9 to -3.5 by intervals of
0.25.

Monte-Carlo methods were used to generate sample values for each of (say, k)
distributed variates involved in a given calculation. Specifically, systematic Latin-
hypercube sampling was used to simulate n,,, samples of each required set of k
variates, where k was determined by the equation(s) being evaluated, and a method
(Iman and Conover, 1982) was used to obtain rank-correlated sample vectors, each with
a rank-correlation matrix M; (i = 1,...,k) not significantly different (p,, > 0.05) from a
specified target matrix T, which by default was a k xk identity matrix modified to reflect

correlations specified below. A value of n,,, =2000 was used unless otherwise
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specified. The k differences between M; and T were each assessed using an asymptotic
chi-square test (Jennrich, 1970), and the p-value from each test was adjusted (to Pagyy tO
account for k independent tests) using Hommel’s Bonferroni-type procedure (Wright,
1992). Typically, Min(p,q) > 0.95; occasional sample vectors not satisfying p,, > 0.01
were rejected. Each simulation was repeated ng, times, a grand AM and its CV
(denoted CVM, where CVM = CVin,,,,/*) from the n, cdf-specific AMs, and the AM
and CVM were calculated for each ith set of n, cdf-specific order statistics (i.e., cdf-
abscissa values), where i=1,...,n,,,. The calculated CVM values reflect simulation
quality by indicating the relative size of Monte-Carlo sampling error prbduced for

estimators of interest conditional on the values of n,,, and n, used.

Target rank-correlation values or matrices were estimated for all sets of correlated
variates noted or implied above, namely, the sets: {Viun Vel (Vi Vil
{(Bong ) (B (B (B (BB )} - {Bor B}, ‘and (U, Uy} (see Results,
Sections 3.1 and 3.2). These correlations were used, respectively, to evaluate: D, and
Dc; in Equations 6 and 15b; D¢ in Equations 15a-b; (BM AJ,) in Equations 16c and 20c;
By, in Equations 16b and 20b, and F(Dc,) in Equation 18. In calculations to estimate

correlations involving (BM M,), values of ng, = 500 and #n,,, = 50 were used.

Correlations involving all the variate sets listed above were used in nested (i.e.,
two-dimensional) Monte-Carlo evaluations of Equation 21 (which, in this case, refers to
Equations 16a and 20a) that were performed to estimate R,,. For these nested
calculations, values of ng, = 100 and n,,, = 999 were used, with n_,, used to simulate all |
uncertain variates, and then used again to simulate all heterogeneous variates

conditional on each of the n,,, simulated sets of uncertain variates. Because
(Bya) = (BM A,,,) and By, = By,, for all pathways P (see Results, Section 3.1), (B,,) and
By, were used to evaluate Equations 16b and 20d, rather than <BMA’P> and By, -
However, to evaluate Equations 16a, 16¢c, 20a, and 20e, pathway-specific dose
correlations noted above were applied to (B,,) and B, to regenerate the pathway-

specific variates involved in these equations.

All calculations were performed on a 400-MHz PowerMac G3 using the programs
Mathematica® 3.0 (Wolfram, 1996) and RiskQ (Bogen, 1992). Documentation of these
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calculations appears in Appendices 2.A through 2.1, in which calculations and related
comments are organized by topié. Appendices 2.A (Concentration), 2.B (Intakes), and
2.C (Fraction of Lifetime at One Local Residence) all document the derivation or re-
derivation of exposure-related input variates expiained in Daniels et al. (1999), Which
were used to calculate TCE exposures as explained above (Section 2.2). Appendices 2.D
(Effective Genotoxic Dose) and 2.E (Effective Cytotoxic Dose) document the calculation
of corresponding biologically effective (TCE or TCA) doses. Note that calculations
pertaining to the definition or characterization of variates Vi, Vymaw Viming: Viar (faeq/ Vip)
and V, all appear in Appendix 2.E. Appendix 2.F (Effective Dose Correlations)
documents calculations made to estimate rank correlations among MA- and pathway-
specific normalized biologically effective doses. Appendix 2.G (Potency) documents all
calculations made pertaining to modeled dose-response under both mechanisms of
carcinogenic action considered (MA; and MA(). Appendix 2.H (TCE Risk) documents
all calculations made pertaining to corresponding predicted risk. Note that calculations
pertaining to the definition of variates Uy, Uigyns and Vi, appear in Appendix 2.H.
Finally, Appendix 2.I (Functions Used) briefly describes all Mathematica® and RiskQ
functions used to carry out calculations documented in Append.ices 2.A-2.H. More
detailed explanation of Mathematica®, RiskQ, and JUV analysis is beyond the scope of

this report, and is provided in references cited.

All constants and variates defined in this report that were used as input to estimate

risk, as described above in Sections 2.1 - 2.6, are summarized in the following table
(Table 2).
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Table 2. Constants and variates used as input for unified TCE risk assessment®

st
; used | pistribution type,
in or near c
arameter value(s
Input o Equa’cion(s)L P ©
type® | ID? | Description Unit # Dist | u c Reference(s)*

K fTCA | Fraction of total TCE intake metabolized to TCA unitless 10 0.33 Allen & Fisher (1993)

K MW | TCA to TCE molecular-weight ratio unitless 10 1.228 Bogen & Gold (1997)

P Y, | Background relative TBARS level in mouse liver unitless 17,18 40 Larson & Bull (1992)

P Yo Significantly elevated relative TBARS level unitless 18 494 Larson & Bull (1992)*

P i, S Estima.te.d location parameter of lognormal | ynitless 18 305  0.0920 Calculated from ;iata of
cytotoxicity dose-response model, and its SD Larson & Bull (1992)

P &, s. | Estimated shape parameter of lognormal cytotoxicity | unitless 18 0732 0176 | CAlculated from data of

¢ | dose-response model, and its SD Larson & Bull (1992)

P P Estimated log-linear-regre‘ss'ion intercept parameter | ynitless 23 -7.60 Calculated (see text)
used to extrapolate cytotoxicity dose-response

P b Estimated log-linear-reg{e'ssion slope parameter | unitless 23 3.68 Calculated (see text)
used to extrapolate cytotoxicity dose-response

U pot Carcinogenic potency of TCE assuming a genotoxic | kg d mg? 16 Emp 3.7x10™ Calculated from data on
mechanism of action 7 studies (see text)
Uncertainty factor for interspecies extrapolation of . EPA (1998)*

u tdyn toxicodynamically equivalent effective dose unitless 16,20 IN 0 16 Slob & Pieters (1999)*
Uncertainty factor for extrapolation of acute to . NCI (1976)*

u chron chronic cytotoxic dose unitless B LN In5 In212 Slob & Pieters (1999)*
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Table 2. Constants and variates used as input for unified TCE risk assessment® (continued)

st
1" used | pigtribution type,
Input Elgu(:’:cilcl)ia(;) parameter value(s)’
type® | ID? | Description Unit # Dist | 4 o Reference(s)
u t1 Normalized estimation error in I unitless 18 T 14 Assumed
u t2 | Normalized estimation error in & unitless 18 ¥ 14 Assumed
. . Finley (1994)
Vv W | US. adult male and female body weight kg 2 LN* 424 0221} ~ poy (1996, p. 107)
v alv Normalized variab.ilit'y. in. alveolar ventilation rate, | ynitless 2,3 LN -0.0409 0.286| CalEPA (1996, p. 3-31)*
independent of variability in Vi, _
|4 Pb | Human blood:air partition coefficient for TCE L./ Liiood 7 N 10.2 1.6 | Fisher (1998)*
|4 liv | Human blood flow to liver = 26%x(15.0/ 12.9)xVa1V mL h? 8 (see V) Allen & Fisher (1993)
V| Vpy | Normalized variability in the maximum rate of TCE | - unitless 8 IN -0.152 0551| Lipscombe etal. (1998)*
metabolism, independent of variability in Vi
v £d Fx"act‘ion ‘of Vi corresponding to apparent volume of | 1, kg 10 U* 0052 0.152| Allen & Fisher (1993)*
distribution for TCA
174 e Normalized var1ab?lity1n :TCA elimination rate Vke/ unitless 10 0152 0551
independent of variability in Vi
Variability factor modeling intraspecies differences . EPA (1998)*
4 tdyn in sensitivity (i.e., in toxicodynamically equiv. dose) unitless 16,20 LN 0700 233 Slob & Pieters (1998)*

“Constants and variates listed are those defined in this report and used or implied in Equations 1 - 21 as inputs to risk
estimation. Variates defined by Equations 1- 21 are not repeated in this table. All other variates that were used to
estimate risk are either defined in Daniels et al. (1999), or are defined in Equations 1 - 21 in terms of constants and variates

listed in this table.
”Input types: K = constant, P = estimated (hence, constant) parameter value, U = uncertain variate, V = heterogeneous
variate (i.e., values pertain to different individuals at risk). ID = the subscript that appears in the text on a K-, U- or V-
type input; ID = the symbol used in the text to denote a P-type input.




Table 2. Constants and variates used as input for unified TCE risk assessment® (footnotes continued)

‘Dist specifies distribution type: LN = lognormal, N = standard normal, T = Student’s T, U = uniform, Emp = calculated
empirical, Blank = not applicable. The values {y, o} = {the estimated/assigned value, (if applicable) the SD} of for K- or P-
type inputs; otherwise {y, o} denote (for the specified Dist): {In GM, In GSD} (LN), {AM, SD} (N), {df, -} (T), and
{min, max} (U). .
4An asterisk signifies that the value or approach cited was modified slightly or generalized for use in this report.

*/These variates assumed to have a rank correlation equal to: -0.50%, 0.294.



3. RESULTS

Resulting estimates of biologically effective dose TCE contamination at Site LF-13
are presented below in Section 3.1, followed (in Section 3.2) by estimated dose-response
relations obtained. Finally, Section 3.3 provides a characterization of corresponding
risks and associated JUV estimated using the unified probabilistic approach applied in
this study, as well as a comparison of these estimates with point-estimates of risk for

Site LF-13 obtained using traditional methods.

3.1 Biologically Effective Dose

The cdfs obtained to characterize variability in the limiting fraction Viming Of low-
level ingested TCE that is metabolized, and in the corresponding limiting fraction Vi
(= Vimder) of low-level respired or dermally absorbed TCE that is metabolized, are
shown in Figure 3. The variates {V, ., V.,} were found to have an approximate rank
correlation of -0.75 (CVM = 0.33%). Although not used in calculations performed in this

study, the rank correlation between variates {ViyingVimin) Was found to be ~0.83
(CVM = 0.30%).

The JUV-expectation of genotoxic effective dose, (Dg), was found to be

5.93x10° mg kg™ d' (CVM < 1%), with corresponding pathway-specific dose fractions:
fc,ng = 0.843, foing = 0.039, and f;,, = 0.118. The JUV-expectation of cytotoxic effective

dose, (E), was found to be 0.0269 mg L (CVM < 1%), with corresponding pathway-
specific dose fractions: fg;,, = 0.604, fgn, = 0.312, and f5;,, = 0.084.

The cdfs obtained for the three pathway-specific expectations with respect to
uncertainty in normalized effective genotoxic dose ((BG,P> for P ={ing, inh, der}, shown
as three bold curves), and for the corresponding three pathway-specific expectations
with respect to variability in normalized effective genotoxic dose (Bgp, three light

curves), are plotted in Figure 4a. The figure shows that the three pathway-specific
curves that comprise each set of (bold or light) curves are virtually indistinguishable.

The cdfs obtained for the three pathway-specific expectations with respect to
uncertainty in normalized effective cytotoxic dose ((Bc_p>, three bold curves), and for

the corresponding three pathway-specific expectations with respect to variability in
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normalized effective cytotoxic dose (B, three light curves), are plotted in Figure 4b.
The figure shows that the three pathway-specific curves that comprise B., (light

curves) are virtually indistinguishable, while those comprising (BC,P> (bold curves) are

nearly so. Thus (By,)=(Byp) and By, = By,, for all pathways P, which justifies the
exclusive reliance on (B,,) and B, for calculations described in Methods. The

variates {E, 1—9;} were found to have an approximate rank correlation of -0.49
(CVM = 0.67%), and rank-correlation and corresponding CVM matrices obtained for the

six (BM AJ,) variates are listed below in Table 3.

3.2 Dose-Response

The cdfs characterizing estimation error (uncertainty) in cancer potency U,
estimated for each of seven animal-bioassay data sets considered are shown in

Figure 5a; the corresponding weighted-average cdf based on weights indicated in
Table 1 is shown in Figure 5b.

The fit of the lognormal model specified by Equation 17 to mouse TBARS-vs.-A
data is shown in Figure 6a. The model fit the experimental data reasonably well
(X =13.6, df = 14, p=0.48). The two corresponding parameter estimates (+SD)
{1 =3.05+0.0920, 6 = 0.732+ 0.176} obtained from the fit, as well as their approximate
rank correlation (r = 0.294), were used to obtain a preliminary estimate of F(Dc,) (see
Methods, Section 2.6). The fit of the function, a + b log;,Dc,, obtained to the first 50
{logyy Dc,, logy, F(Dc,)} points of the preliminary PC(DCa) estimate is shown in Figure 6b;
the two corresponding parameter estimates (+SD) obtained were {a =-7.60 £ 0.0794,
bh=368+ 0.521}. The risk-extrapolation model fit the empirical (simulation-generated)
data points of the preliminary cdf very well (F, ,; = 4974.2, R* = 0.99, df = 48, 2-tail p = 0),
indicating stable (hence, reliably modeled) lower-tail behavior. The resulting cdf (i.e.,

combined set of extrapolated + preliminary points) estimating F-(Dc,) is shown in

Figure 7.
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Figure 3. Cumulative distribution functions characterizing interindividual
variability in limiting metabolized fractions Vi, of low-level TCE absorbed via
different exposure pathways P, where P = {ing, inh, and der} for {ingestion,
ihalation, and dermal} pathways, respectively.
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Figure 4. Expectations with respect to uncertainty vs. variability in normalized
effective (a) genotoxic and (b) cytotoxic dose. Cumulative distribution functions
(cdfs) shown characterize normalized interindividual variability in values of
expected dose (bold curves), and normalized uncertainty in the population-
average value of dose (light curves) predicted for hypothetical residents exposed
to TCE from ground water at Site LE-13. Three bold and three light exposure-
pathway-specific curves appear in each plot; however, all these curve sets ve
nearly coincide, except for slight divergence in the case of the bold curves in (b).
All the cdfs have an arithmetic mean value of one by definition.
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Table 3. Rank correlations among uncertainty-expectations of normalized biologically
effective doses” '

(BMA’P,) variate

(Bur) |[MA P [MA P |[MA P [MA P |[MA P |[MA P
variate G ing| C ing| G inh| C inh | G der| C der
MA | G

1 0.23 0.88 0 0.89 0
P ing
MA| C )

0.23 1 0 0.42 0 0.51
P ing
MA | G

0.88 0 1 0.19 0.92 0.035
P inh
MA | C

0 0.42 0.19 1 0.077 0.65
P inh
MA |G

0.89 0 0.92 0.077 1 0.18
P der '
MA | C

0 0.51 0.035 0.65 0.18 1
P der

“Estimated values of the Spearman rank correlation coefficient (r, shown with two significant digits)
based on Monte-Carlo evaluation of the uncertainty-expectation of Equation 5c based on Equations 6 and
15a-b, where n,,,, = 500 and n,, = 50. For all r-values listed, SDM < 0.0025 where SDM = (n4,,)"/*SD(r)
and SD(r) denotes the SD of the n,, estimates of r obtained.

3.3 Predicted Risk

The individual risks predicted in this study correspond to the assumption that the
assumed TCE concentration in ground water beneath Site LF-13 (~22 ppb, as of 1997)
remains unchanged (see Daniels et al., 1999). The cdfs obtained that characterize
uncertainty in the predicted population-average value of individual risk, R, and
interindividual variability in expected values (i.e., “best” estimates) of individual risk,
(R), are shown in Figures 8a and 8b, respectively, plotted together with corresponding
CVM values. The cdfs R and (R) are contrasted over different ranges of risk in Figures

9a-c. Figures 10a-b compare cdfs with respect to variability (v) in JUV estimators R,,
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Figure 5. Estimation error (uncertainty) in cancer potency based on rodent-bioassay
data. Cumulative distribution functions (cdfs) shown characterize uncertainty in
potency estimates based on (a) individual data sets, and (b) a corresponding weighted
average of the species/strain/sex-specific cdfs. The numbers labeling individual cdfs in
(a) correspond to the study numbers listed in the first column of Table 1. The vertical
axis represents cumulative probability.
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Figure 6. Fit and extrapolation of lognormal model to mouse cytotoxicity data from
Larson and Bull (1992a). (a) Experimental mean (+1 SD) data are shown (open points)
for TCA-induced net increases inanh epatocellular lipoperoxidative index (TBARS)
associated with toxicity, compared to the upper bound on the normal TBARS range
minus the mean background level. Fit to these data is the lognormal model specified by
Equation 17 (curve). Simulated parameter values based on the latter fit were used to
construct a bootstraped cdf (bdf) for significant TBARS response conditional on dose.
The bdf required low-risk extrapolation, however, and plot (b) shows how this was
done using 50 points from the left tail of the bdf.
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Figure 7. Risk of cytotoxic response estimated from mouse cytotoxicity data of Larson

and Bull (1992a) on TCA-induced TBARS elevation, as a function of acute administered
TCA dose d.
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Figure 8. Uncertainty in (a) population-average risk, R, and (b) interindividual
variability in expected risk, (R), predicted for hypothetical individuals exposed to TCE
in ground water from Site LF-13. In each plot, the Monte-Carlo relative-sampling error
of the x-axis value of each point on the bold cdf curve is indicated by the corresponding
y-axis value (labeled CVM) of the light curve shown. For example, from plot (a) the 99
percentile value of Ris estimated to be ~0.29x10, which estimate has a CVM of ~0.051,
indicating a sampling error of about +5%.
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Figure 9. Comparison of R (bold curves) vs. (R) (light curves) over different ranges of
predicted risk: (a) R <0.01x10%, (b) R <0.5x10°%, and (¢) R £25x10*. The relationship is
not consistent over these risk ranges, and both cdfs are highly skewed.
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Figure 10. Comparison of estimators, R,,, o f joint uncertainty and variability in risk,
over different ranges fo risk, where u and v refer to fractiles with respect to uncertainty
and variability, respectively, and where the upp

@), R,g9 < 5%x10% and in (b) R,44 < 0.25x10°. CVM curves denote corresponding
relative error, as in Figure 8. The CVM that exceeds 0.20 where R, g = 0.25x10°
corresponds to value of u = 0.50 (median uncertainty), conditional on w hich, for
example, Ryso4 = 0.017x10°. The CVM > 0.20 therefore pertains to a very unlikely level
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conditional on specified confidence pbounds (1) on uncertainty, for u = 0.50, 0.95, and
0.99. The nested Monte-Carlo calculations required to estimate these three R, , cdfs took
a total of 10.6 h to perform.

Table 4 provides a comparison of an upper variability bound (v = 0.99) on these

~ cdfs to mean and upper-bound values of R and (R), as well as to traditional point-
estimates of risk ( Ry, and RHigh) taken from Daniels et al. (1999). CVM values were all

about 10% or less, except for a CVM value of 23% for the expected value of R. These
CVM values indicate reliability in the result obtained that the estimated mean and

upper-bound values of R and (R) are all <10%, and that both JUV estimators are
< 5x10°.

Corresponding estimates of population risk (i.e., the uncertain number N of cases of
cancer or TCE-induced toxicity) depend on the assumed size n of the total exposed
population (including all immigrants to and emigrants from areas hypothetically served
by Site LF-13 water), for an arbitrarily assumed total period equal to one average
lifetime (taken to be 70 y), during which total or partial lifetime exposures would
hypothetically occur (see Daniels et al., 1999). Expected population risk (N} conditional
on various assumptions concerning population size n are listed in Table 5, together with
estimates of the corresponding likelihood (1 - p,) of one or more cases, and the
likelihood (p,) of zero cases, being attributable to TCE in groundwater at Site LF-13 over
the 70-y period of consideration.
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Table 5. Population risk associated with multipathway exposures to TCE-contaminated
ground water at Beale Air Force Base in California*®

e;;);:é d pggg?:ggn Expected value®
— N\ b
population during7.6y Prob(N = 0) Prob(N 2 0) of N —
over70y n Mres P, 1-P, (N) =nx <R>
100 11 0.99998 0.00002 0.0000022
1,000 109 0.99981 0.00019 0.00022
2,000 217 0.99967 0.00033 0.00044
10,000 1,086 0.99919 : 0.00081 0.0022
30,000 3,257 0.99863 0.00137 0.0066
100,000 10,857 0.99717 0.00283 0.022
1,000,000 108,571 0.98453 0.01547 0.22
310,795,000 33,743,457 0.50 0.50 68.

°N = population risk, i.e., the predicted number of cases (i.e., individuals with) a cancer
or noncancer endpoint due to exposure to TCE from Site LF-13; n = the total number of
individuals assumed to incur the population-average risk R within a 70-y period of
consideration; n,., = mean number of exposed people at any given moment assumed to

be served by ground water from Site LF-13, assuming a mean 7.6-y duration of
residence (see Daniels et al., 1999).

’Probabilities were arbitrarily rounded to 5 decimal places so complimentary values
listed sum to 1; no more than 2 significant figures are implied.
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4. DISCUSSION

A unified probabilistic approach was applied to estimate the aggregate risk of
cancer and noncancer endpoints for hypothetical future residents exposed to TCE from
ground water at an inactive landfill site at Beale U.S. Air Force Base. The approach
developed is superior to previous related efforts (Baird et al., 1996; Butterworth and
Bogdanffy, 1999; Carlson-Lynch et al., 1999; Gaylor et al., 1999; Lewis, 1993; Slob and
Pieters, 1998), insofar as it is the first to provide an integrated, consistent treatment of:
(a) cancer as well as noncancer endpoints, (b) two disparate yet plausible mechanisms
of carcinogenic action in the case TCE (genotoxic vs. cytotoxic), (c) pharmacokinetic
considerations, and (d) quantitative analysis of JUV in model inputs and corresponding
characterized risk. The approach incorporates some of the probabilistic methods
suggested previously, but modifies others in important ways. For example, the
human-variability factor Vi, (that has an AM of 1) and the acute-to-chronic uncertainty
factor (1+Ugy,) (that by definition is >1) used here differed fundamentally from
analogous factors recommended by Slob and Pieters (1998), in order for these factors to
fit logically within a unified approach capable of adressing points (a)-(d). Application
of the approach to the case of TCE also highlighted and addressed key technical issues
never before considered in this context, such as the practical requirement for analytic
low-risk (extreme-value) extrapolation of any relation between response probability and

effective dose that is—e.g., as suggested by Slob and Pieters (1998)—bootstrapped from
experimental toxicity data.

All estimates of individual risk obtained in this study (Table 4) are far less than
corresponding upper-bound point estimates of individual risk, Ry and Ry, that

were obtained for comparison by Daniels et al. (1999) using standard, traditional
deterministic methods (namely, algebraic substitution of upper-bound and/or default
parameter values into equations used to estimate risk). A similar result was obtained
by Daniels et al. (1999), who did not consider JUV in pharmacokinetic and dose-
‘response relations pertaining to TCE risk. In the present study, application of a unified
probabilistic approach to consider JUV in pharmacokinetic and dose-response relations
pertaining to TCE had a substantial impact on predicted risk for Site LF-13. This impact

can be assessed by comparing the risk summary in Table 4 of the present study with
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that in Table 3 of Daniels et al. (1§99). The upper-bound risk estimators R, and

(R)ys0btained in the present study are about 50- and 100-fold less, respectively, than
the value of these estimators obtained by Daniels et al. (1999).

Even the JUV-estimator Rygs495 approximated in Daniels et al. (1999) is (slightly)
greater than the value (of ~2x10°) obtained here using a nested Monte-Carlo procedure
for the more conservative JUV-estimator Rygso95. Only the relatively more conservative
JUV-estimator, Rygy04, Was predicted to have a value (~40x10° substantially greater

than 10°. While the latter value is less than the deterministically (hence, relatively
easily) calculated Ry, value of (~60x10°), the two values are fairly close, indicating that

Reyw in this case provides a credible estimate of the more precisely defined estimator
Rog090 (namely, the 99™ percentile on uncertainty in risk to the person who is at the 99™
percentile of risk relative to others at risk). Furthermore, Ry is relatively easily
calculated, whereas R,y ,¢y required about 10 h of computation in the present study. It

might therefore be preferable to use Ry, to optimize risk reduction relative to an

upper-bound JUV estimator (such as Ryg9)-

Upper-bound JUV estimators allow explicit consideration of equity in the
distribution of interindividual variability in imposed risk. Point estimates such as Ry

cannot do this explicitly, becaus_e they cannot generally be interpreted in any precise
manner with respect to variability per se or to uncertainty per se. In the present case
study, both Ry and Ros9090 are < 5x10*, which indicates (vaguely via Ry, explicitly
by Rygs099) the de minimis nature of predicted upper-bound risks plausibly due to TCE at
Site LF-13 hypothetically faced by those who would be among most at risk relative to
others exposed to ground water from that site. However, such risk estimates do not
necessarily correspond to the magnitude of health consequences predicted to be
associated with such exposure. Such effects can only be addressed by quantitatively

considering uncertainty in population risk, which in turn can only be accomplished by

quantitative JUV analysis that characterizes uncertainty in population-average risk R

conditional on population size n (e.g., via Equation 22) (Bogen, 1986,1990b; Bogen and
Spear, 1987).
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Interesting results concerning :'population risk were obtained in this study via
quantitative JUV analysis adélressing multiple health endpoints and multiple
mechanisms concerning TCE-induced health risk. Earlier results by Daniels et al. (1999)
indicated that exposure to TCE from ground water at Site LF-13 would be unlikely to
cause a single occurrence of a TCE-related health impact provided that n < ~30,000.
Results from the present, more comprehensive analysis (Table 5) indicate that a single
case is unlikely to occur even if the population served by ground water from Site LE-13
were >10°. That is, the new results indicate that a single case is unlikely to occur under
any realistic assumption concerning population size. Moreover, results obtained in the
present study indicate that, under the assumptions used, there is a >99% chance that
TCE-related mitigation of Site LF-13 would confer no (i.e., zero) public-health benefit if
as many as 10,000 or fewer people were residentially served by the site’s TCE-
contaminated water (assuming the concentration of TCE never were to increase above
levels measured in 1997). Therefore, under this population scenario, any resources
directed at mitigating the site are virtually certain to be wasted from a public-health
perspective. Even this hypothetical scenario is conservative, because it is likely that
current TCE contamination in ground water at Site LF-13 (due to a finite mass of TCE
contamination) could not persist for 70 y if that water were to serve 10,000 hypothetical
residents throughout this period. Dilution of the source mass is expected, and the
magnitude of this dilution is expected to be proportional to the water flow rate into and
away from the source; indeed, this is the basis for pump-and-treat site-mitigation
strategies. Water service to that many people from this single goundwater source—if
even possible—would also induce some (perhaps substantial) infiltration of non-
contaminated water, again causing dilution of residentially delivered TCE

concentrations.

61



5. REFERENCES

Abbas, R., and J.W. Fisher. 1997. A physiologically based pharmacokinetic model for
trichloroethylene and its metabolites, chloral hydrate, trichloroacetate,
dichloroacetate, trichloroethanol, and trichloroethanol glucuronide in B6C3F1
mice. Toxicol. Appl. Pharmacol. 147:15-30.

Acharya, S., K. Mehta, S. Rodriguez, J. Pereira, S. Krishnan, and C.V. Rao. 1997. A
histopathological study of liver and kidney in male Wistar rats treated with

subtoxic doses of t-butyl alcohol and trichloroacetic acid. Exper. Toxicol. Pathol.
49:369-373. -

Aitchison, J., and J.A.C. Brown. 1957. The Lognormal Distribution. Cambridge U. Press,
New York. :

Allen, B.C., and J.W. Fisher. 1993. Pharmacokinetic modeling of trichloroethylene and
trichloroacetic acid in humans. Risk Anal. 15:71-86.

Ames, B., and L.S. Gold. 1990a. Too many rodent carcinogens: Mitogenesis increases
mutagenesis. Science. 249:970-972.

Ames, B.N., and L.S. Gold. 1990b. Chemical carcinogenesis: Too many rodent
carcinogens. Proc. Natl. Acad. Sci. 87:7772-7776.

Ames, B.N., L.S. Gold, and W.C. Willett. 1995. The causes and prevention of cancer.
Proc. Natl. Acad. Sci. 92:5258-5265.

Ames, B.N., M.K. Shigenaga, and L.S. Gold. 1993. DNA lesions, inducible DNA repair,
and cell division: Three key factors in mutagenesis and carcinogenesis. Environ.
Health Perspect. 101(Suppl. 5):35-44.

Andersen, M.E., H.A. Barton, R. Bull, and I. Schultz. 1998. DCA dosimetry: Interpreting
DCA-induced liver cancer dose-response and the potential for DCA to contribute to
TCE-induced liver cancer, AL-OE-DR-TR-1998-0009. United States Air Force
Armstrong Laboratory, Brooks Air Force Base, TX.

Anderson, E.L., RE. Albert, R. McGaughy, L. Anderson, S. Bayard, D. Bayliss, C. Chen,
M. Chu, H. Gibb, B. Haberman, C. Hiremath, D. Singh, and T. Thorslund. 1983.
Quantitative approaches in use to assess cancer risk. Risk Anal. 3:277-295.

Armitage, P., and R. Doll. 1957. A two-stage theory of carcinogenesis in relation to the
age distribution of human cancer. Br. J. Cancer. 11:161-169.

Baird, SJ.S., ].T. Cohen, ].D. Graham, A.I Shlyakter, and J.S. Evans. 1996. Noncancer

risk assessment: A probabilistic alternative to current practice. Human Ecol. Risk
Assessment. 2:79-102.

Bell, Z.G., KJJ. Olsen, and T.J. Benya. 1978. Final Report of Audit Findings of the
Manufacturing Chemists Association (MCA): Administered Trichloroethylene
(TCE) Chronic Inhalation Study at Industrial Bio-Test Laboratories, Inc., Decator,
Illinois. Unpublished study reported in EPA (1985).

Bogen, K.T. 1986. Uncertainty in Environmental Health Risk Assessment: A Framework
for Analysis and an Application to a Chronic Exposure Situation Involving a

Chemical Carcinogen. In School of Public Health. University of California,
Berkeley. 195.

62



Bogen, K.T. 1988. Pharmacokinetics for regulatory risk assessment: The case of
trichloroethlyene. Regulatory Toxicol. Pharmacol. 8:447-466.

Bogen, K.T. 1989. Cell proliferation kinetics and multistage cancer risk models. J.
National Cancer Inst. 81:267-277.

Bogen, K.T. 1990a. Risk extrapolation for chlorinated methanes as promoters vs
initiators of multistage carcinogenesis. Fund. Appl. Toxicol. 15:536-557.

Bogen, K.T. 1990b. Uncertainty in Environmental Health Risk Assessment. Garland
Publishing, Inc., New York.

Bogen, K.T. 1992. RiskQ: An interactive approach to probability, uncertainty, and
statistics for use with Mathematica. Lawrence Livermore National Laboratory,
Livermore, CA UCRL-MA-110232;. «

Bogen, K.T. 1994. Cancer potencies of heterocyclic amines found in cooked foods. Fd.
Chem. Toxicol. 32:505-515.

Bogen, K.T. 1995. Methods to approximate joint uncertainty and variability in risk. Risk
Anal. 15:411-419.

Bogen, K.T., and L.S. Gold. 1997. Trichloroethylene cancer risks: Simplified calculation

of PBPK-based MCLs for cytotoxic endpoints. Regulatory Toxicol. Pharmacol. 25:26-
42,

Bogen, K.T., and L.C. Hall. 1989. Pharmacokinetics for regulatory risk assessment: The

case of 1,1,1-trichloroethane (Methyl chloroform). Regulatory Toxicol. Pharmacol.
10:26-50.

Bogen, K.T., L.C. Hall, T.E. McKone, D.W. Layton, and S.E. Patton. 1988. Health Risk
Assessment of Trichloroethylene in California Drinking Water. Report prepared for
the California Public Health Foundation and California Department of Health
Services. Lawrence Livermore National Laboratory, Livermore, CA.

Bogen, K.T., and R.C. Spear. 1987. Integrating uncertainty and interindividual
variability in environmental risk assessment. Risk Anal. 7:427-436.

Brdwn, L.P., D.G. Farrar, and C.G. DeRooij. 1990. Health risk assessment of

environmental exposure to trichloroethylene. Regulatory Toxicol. Pharmacol. 11:24-
41.

Bull, RJ., LM. Sanchez, M.A. Nelson, J.L. Larson, and AJ. Lansing. 1990. Liver tumor

induction in B6C3F1 mice by dichloroacetate and trichloroacetate. Toxicology.
63:341-359. '

Butterworth, B.E., and M.S. Bogdanffy. 1999. A comprehensive approach for integration
of toxicity and cancer risk assessments. Regulatory Toxicol. Pharmacol. 29:23-36.

California Environmental Protection Agency (CalEPA). 1996. Air Toxics Hot Spots
Program Risk Assessment Guidelines Part IV, Technical Support Document:

Exposure Assessment and Stochastic Analysis (December 1998). CalEPA Office of
Health Hazard Assessment, Berkeley, CA.

Carlson-Lynch, H., P.S. Price, J.C. Swartout, M.L. Dourson, and R.E. Keenan. 1999.
Application of quantitative information on the uncertainty in the RfD of
Noncarcinogenic risk assessments. Human Ecol. Risk Assess,. 5:527-546.

Cohen, S.M., and L.B. Ellwein. 1990. Cell proliferation in carcinogenesis. Science.
249:1007-1011.

63



Cohen, S.M., and L.B. Ellwein. {1991. Genetic errors, cell proliferation, and
carcinogenesis. Cancer Res. 51:6493-6505.

Daniels, J., K.T. Bogen, and L. Hall. 1999. Procedures for addressing uncertainty and
variability in exposure to characterize potential health risk from trichloroethylene
contaminated groundwater at Beale Air Force Base in California. Lawrence
Livermore National Laboratory, Livermore, CA.

DeAngelo, A.B., E.B. Daniel, B.M. Most, and G.R. Olson. 1997. Failure of
monochloroacetic acid and trichloroacetic acid administered in the drinking water
to produce liver cancer in male F344/N rats. J. Toxicol. Environ. Health. 52:425-445.

DeAngelo, A.B., E.B. Daniel, J.A. Stober, and G.R. Olsen. 1991. The carcinogenicity of
dichloroacetic acid in the male B6C3F1 mouse. Fund. Appl. Toxicol. 16:337-347.

Dees, C., and C. Travis. 1994. Trichloroacetate stimulation of liver DNA éynthesis in
male and female mice. Toxicol. Lett. 70:343-355.

Dourson, M.L., S.P. Felter, and D. Robinson. 1996. Evolution of science-based

uncertainty factors in noncancer risk assessment. Regulatory Toxicol, Pharmacol.
24:108-120.

Eyre, R.J., D.K. Stevens, ]J.C. Parker, and R.J. Bull. 1995. Renal activation of
trichloroethylnene and S-(1,2-dichlorovinyl)-L-cysteine and cell proliferative

responses in the kidneys of F344 rats and B6C3F1 mice. ]. Toxicol. Environ. Health.
46:465-481.

Fahrig, R., 5. Madle, and H. Baumann. 1995. Genetic toxicology of trichloroethylene.
Mutat. Res. 340:1-36. :

Finley, B., D. Proctor, P. Scott, N. Harrington, D. Paustenback, and P. Prince. 1994.
Recommended distributions for exposure factors frequently used in health risk
assessment. Risk Anal. 14:533-553.

Fisher, J.W., and B.C. Allen. 1993. Evaluating the risk of liver cancer in humans exposed
to trichloroethylene using physiological models. Risk Anal. 15:87-95.

Fisher, ] W., M.L. Gargas, B.C. Allen, and M.E. Andersen. 1991. Physiologically based
pharmacokinetic modeling with trichloroethylene and its metabolite, trichloroacetic
acid, in the rat and the mouse. Toxicol. Appl. Pharmacol. 109:183-195.

Fisher, J.W., D. Mahle, and R. Abbas. 1998. A human physiologically based
' pharmacokinetic model for trichloroethylene and its metabolites, trichloroacetic
acid and free trichloroethanol. Toxicol. Appl. Pharmacol. 152:339-359.

Gaylor, D.W., R.L. Kodell, ].J. Chen, and D. Krewski. 1999. A unified approach to risk
assessment for cancer and noncancer endpoints based on benchmark doses.
Regulatory Toxicol. Pharmacol. 29:151-157.

Harrington-Brock, K., C.L. Doerr, and M.M. Moore. 1998. Mutagenicity of three
disinfection by-products: Di- and trichloroacetic acid and chloral hydrate in
L5178Y/TK +/- (-)3.7.2C mouse lymphoma cells. Mutat. Res. 413:265-276.

Herren-Freund, S.L., M.A. Pereira, M.D. Khoury, and G. Olson. 1987. The
carcinogenicity of trichloroethylene and its metabolites, trichloroacetic and
dichloroacetic acid, in mouse liver. Toxicol. Appl. Pharmacol. 90:183-189.



Iman, R.L.,, and W.J. Conover. 1982. A distribution-free approach to inducing rank

correlation among input variates. Commun. Statist. (Ser. B) Simulation and
Computation. 11:311-334.

Jennrich, RI 1970. An asymptotic x? test for the equality of two correlation matrices. J.
Am. Stat. Assoc. 65:904-912.

Larson, J.L., and RJ. Bull. 1992a. Metabolism and lipoperoxidative activity of

trichloroacetate and dichloroacetate in rats and mice. Toxicol. Appl. Pharmacol.
115:268-277.

Larson, J.L., and R.J. Bull. 1992b. Species differences in the metabolism of
trichoroethylene to the carcinogenic metabolites trichloroacetate and
dichloroacetate. Toxicol. Appl. Pharmacol. 115:278-285.

Lewis, S.C. 1993. Reducing-uncertainty with adjustment factors: Improvements in
quantitative noncancer risk assessment. Fund. Appl. Toxicol. 20:2-4.

Lipscomb, J.C., J.W. Fisher, P.D. Confer, and J.Z. Byczkowski. 1998. In vitro to in vivo

extrapolation for trichloroethylene metabolism in humans. Toxicol. Appl. Pharmacol.
152:376-387.

Maltoni, C., G. Lefemine, and G. Cotti. 1986. Archives of Research on Industrial

Carcinogenesis. ~Vol. V. Experimental Research of Trichloroethylene
Carcinogenesis. Princeton University Press, Princeton, N.J.

Merdink, J.L., A. Gonzalez-Leon, R.J. Bull, and LR. Schultz. 1998. The extent of
dichloroacetate formation from trichloroethylene, chloral hydrate, trichloroacetate,
and trichloroethanol in B6C3F1 mice. Toxicol. Sci. 45:33-41.

Moolgavkar, S.H. 1983. Model for human carcinogenesis: Action of environmental
agents. Environ. Health Perspect. 50:285-291.

Moolgavkar, 5.H., A. Dewanji, and D.J. Venzon. 1988. A stochastic two-stage model for

cancer risk assessment: The hazard function and the probability of tumor. Risk
Anal. 8:383-392.

Moolgavkar, S.H., and A.G. Knudson. 1981. Mutation and cancer: A model for-human
carcinogenesis. J. Natl. Cancer Inst. 66:1037-1052.

National Cancer Institute (NCI). 1976. Carcinogeneiss Bioassay of Trichloroethylene.
NCI-CG-TR-2, DHEW Publ. No. (NIH) 76-802. U.S. Government Printing Office,
Washington, DC.

National Research Council (NRC). 1994. Science and Judgment in Risk Assessment. NRC

Committee on Risk Assessment of Hazardous Air Pollutants, National Academy
Press, Washington, DC.

National Toxicology Program (NTP). 1988. Toxicology and Carcinogenesis Studies of
Trichloroethylene (CAS No. 79-01-6) in Four Strains of Rats (ACI, August, Marshall,
Osborne-Mendel) (Gavage Studies). NIH Pub No. 88-2529, NTP Tech. Rep. Ser. No.
273. National Institutes of Health, NTP, Research Triangle Park, NC.

National Toxicology Program (NTP). 1990. Carcinogenesis Studies of Trichloroethylene
(Without Epichlorohydrin) (CAS No. 79-01-6) in F344/N Rates and B3C3F1 Mice (Gavage

Studies). NIH Pub No. 90-1799. National Institutes of Health, NTP, Research
Triangle Park, NC.

65



Ni, Y.C,, T.Y. Wong, R.V. Llyoyd, T.M. Heinze, S. Shelton, D. Caciano, E.F. Kadlubar,
and P.P. Fu. 1996. Mouse‘liver microsomal metabolism of chloral hydrate,
trichloroacetic acid, and trichloroethanol leading to induction of lipid peroxidation
vai a free radical mechanism. Drg. Metab. Disposition. 24:81-90.

Pereira, M.A. 1996. Carcinogenic activity of dichloroacetic acid and trichloroacetic acid
in the liver of female B6C3F1 mice. Fund. Appl. Toxicol. 31:192-199.

Pereira, M.A., and ].B. Phelps. 1996. Promotion by dichloroacetic acid and
trichloroacetic acid of N-methyl-N-nitrosourea-initiated cancer in the liver of
female B6C3F1 mice. Cancer Lett. 102:133-141.

Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. 1992. Numerical
Recipes in FORTRAN — The Art of Scientific Computing. Cambridge University
Press, New York, pp. 650-700. )

Renwick, A.G. 1993. Data derived safety factors for the evaluation of food additives and
environmental contaminants. Food Add. Contam. 10:275-305.

Slob, W., and M.N. Pieters. 1998. A probabilistic approach for deriving acceptable
human intake limits and human health risks from toxicological studies: General
framework. Risk Anal. 18:787-798.

Stenner, R.D., J.L. Merdink, J.W. Fisher, and R.J. Bull. 1998. Physiologically-based
pharmacokinetic model for trichloroethylene considering enterohepatic
recirculation of major metabolites. Risk Anal. 18:261-269.

Templin, M.V., ].C. Parker, and R.J. Bull. 1993. Relative formation of dichloroacetate and

trichloroacetate from trichloroethylene in male B6C3F1 mice. Toxicol. Appl.
Pharmacol. 123:1-8.

U.S. Environmental Protection Agency (EPA). 1985. Health Assessment Document for
Trichloroethylene. EPA/600/8-82/006F. U.S. EPA Office of Research and
Development, Office of Health and Environmental Assessment, Environmental
Criteria and Assessment Office, Research Triangle Park, NC.

U.S. Environmental Protection Agency (EPA). 1987a. Technical Analysis of New
Methods and Data Regarding Dichloromethane Hazard Assessments. EPA/600/8-
87/029A (June 1987). U.S. EPA Office of Health and Environmental Assessment,
Washington, DC.

U.S. Environmental Protection Agency (EPA). 1987b. Addendum to the Health
Assessment Document for Trichloroethylene: Updated Carcinogenicity Assessment
for Trichloroethylene. EPA/600/8-82/006FA. U.S. EPA Office of Research and
Development, Office of Health and Environmental Assessment, Environmental
Criteria and Assessment Office, Research Triangle Park, NC.

U.S. Environmental Protection Agency (EPA). 1992. Draft report: A cross-species

scaling factor for carcinogen risk assesment based on equivalence of
mg/kg3/4/day. Fed. Register. 57(No. 109, June 5):24152-24172.

U.S. Environmental Protection Agency (EPA). 1996. Proposed Guidelines for
Carcinogen Risk Assessment. EPA/600/P-92/003C. U.S. EPA Office of Research
and Development, Washington, DC.

U.S. Environmental Protection Agency (EPA). 1998. Ambient Water Quality Criteria
Methodology: Human Health [EPA /822-7-98-001, U.S. EPA Office of Water]. Fed.
Regist. 63(No. 157, Aug. 14):43755-43828.

66



URS Greiner Woodward Clyde (URSGWC). 1998. Management Action Plan, Beale Air
Force Base, California. December 1998. Prepared for Headquarters Air Combat
Command (ACC), Langley Air Force Base, VA, under contract to US Air Force
Center for Environmental Excellence (AFCEE), Brooks Air Force Base, TX, Project
No. ACCH19987544 [obtain from Chief, Environmental Restoration (M.E. O’Brien),
Beale Air Force Base, California]. URSGWC, Omaha, NE.

Weil, C.S. 1972. Statistics vs. safety factors and scientific judgment in the evaluation of
safety for man. Toxicol. Appl. Pharmacol. 21:454-463.

Wolfram, S. 1996. The Mathematica Book. Cambridge University Press, Cambridge, UK.
Wright, 5. 1992. Adjusted p-values for simultaneous inference. Biometrics. 48:1005-1013.

67



' Appendix 1.

Method of Moments for Lognormal Variates

Given a normally distributed variate Y with arithmetic mean (AM) p, standard

deviation (SD) o,, and corresponding coefficient of variation (CV = SD/AM)

¥y = (0y/ 1y), the variate X = e” has a lognormal (LN) distribution with geometric mean

(GM) e and geometric standard deviation (GSD) ¢°%, where e = In"(1) and In denotes
- natural logarithm. These assumptions are efficiently denoted Y ~ N(u,,0,) and
X ~LN(uy,0y). The method of moments may be used to relate given AM, SD, and CV
values of X (Uuy, oy, and ¥, respectively) to those of Y; in particular, the AM/GM ratio
for X, p=(p,/e™), is equal to €*'* where 62 =In p?> = In(1 + ¥2) (Aitchison and
Brown, 1957).

LN moment relations conveniently imply that the ratio of any given percentile of X
relative to its GM or AM corresponds to a unique set of LN parameters. Let
X, = " denote the 100pth percentile of X, where 0<p <1, z,= &(p), and @ is the
cumulative normal probability distribution function. Now let gq,=X,/e* and

r, = X,/ lix denote the ratios of X, to the GM and AM of X, respectively. Conditional on
e’’and the ratio g, it follows immediately (by solving for u, and o,) that
X ~LN(y,, In q;/z"). Conditional on pu, and the ratio r,, it follows that
X~ LN[lh(ux) -(0:/2), 6,], where o, is the positive o,-root of
0y -22,6,+2In1,=0;ie, 0, = 2, + \/m forallr, < e /2 (larger values of 7, are
not possible conditional on z,).

LN moment relations also imply that for any independent LN variates X, = ",

i=1,...,n, with corresponding CVs ¥;, the CV y, of the product Z= HXi is
i=1

conveniently ralated as follows to the CVs ¥y, of X;:
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Yz

T = [Froron)
\/—1 + exp(ioi. J = \/—1 + exp(iln(“ i ))

1l

i=1 i=1

- [ TT0e)

Conditional on known 7, and y; for i#j and 1<j<n, inverting the latter equation

readily yields the unknown CV of X; as

14 92
'}/I = .._n_._ﬁ__._l

E][(1+yf)

If y; is obtained in this way and a single additional X-parameter among the set {AM,

SD, GM, GSD} is known, all three remaining X-parameters are easily obtained via the

“moment relations described above. For example, if the AM of X; equals 1, it follows that

X; ~ LN(-0*/2, 0) where ¢ = In(1+77).
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Appendix 2.

Mathematica 3.0° Notebooks Documenting Calculations

All calculations were performed on a 400-MHz PowerMac G3 using thé programs
Mathematica® 3.0 (Wolfram, 1996) and RiskQ (Bogen, 1992). Documentation of these
calculations appears in Appendices 2.A through 2.1 which follow, in which calculations
and related comments are organized by topic. Appendices 2.A (Concentration), 2.B
(Intakes), and 2.C (Fraction of Lifetime at One Local Residence) all document the
derivation or re-derivation of exposure-related input variates explained in Daniels et al.
(1999), which were used to calculate TCE exposures as explained above (Section 2.2).
Appendices 2.D (Effective Genotoxic Dose) and 2.E (Effective Cytotoxic Dose)
document the calculation of corresponding biologically effective (TCE or TCA) doses.
Note that calculations pertaining to the definition or characterization of variates Vy,
Vymaw Veming Viar (faeg/ Vip) and 'V, all appear in Appendix 2.E. Appendix 2.F (Effective
Dose Correlations) documents calculations made to estimate rank correlations among
MA- and pathway-specific normalized biologically effective doses. Appendix 2.G
(Potency) documents all calculations made pertaining to modeled dose-response under
both mechanisms of carcinogenic action considered (MA; and MA.). Appendix 2.H
(TCE Risk) documents all calculations made pertaining to corresponding predicted risk.
Note that calculations pertaining to the definition of variates Ugyon, Uigyn and Vg,
appear in Appendix 2.H. Finally, Appendix 2.I (Functions Used) briefly describes all
Mathematica® and RiskQ functions used to carry out calculations documented in
Appendices 2.A-2.H.

Please note that more detailed explanation of Mathematica®, RiskQ, and JUV analysis

is beyond the scope of this report, and is provided in references cited.
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A. Concentration

Al

Appendix 2.A

Concentration
of TCE @ BAFB (mg/L)

Y =Log[X]

con={.018, .021, .028}; (*mg/Lx)
{{my, sdmy} = {EV[Log[con]], SD[Log[con]] /Sqrt([3]},
{mx, sdmx} = {EV[con], SD[con] / Sqrt[3]}}

{{-3.81872, 0.129473}, {0.0223333, 0.00296273}}
{cv = sdmx / mx, E4gdmx}

{0.13266, 1.00297}

t0=tt /. Solve[mx +tt xsdx ==0, tt][[1]]

-4.35212

RQ[C, T, 2, t0]

0.0244757

tsim = SimulateCcdf{{T, 2}, 2000];

Sort{tsim] [[{1, 2, 3, 1998, 1990, 1999, 2000}]]

{-31.607, -22.3327, -18.2209, 18.2209, 9.45819, 22.3327, 31.607}

¢ =E* (0 + sdmy » tsim) ;
{{mec =EV[c], 8D[c]}, {EV[Log[c]], SD[Log[c]]}, TAf[Ccdf[c], {.5, .95}]}

{{1.08122, 1.43409}, {1.10724x10'”, 0.32201}, {0.999908, 1.45641}}
simulated conc. values

scon = (mx/mc) c;
{ {mcon = EV{scon], SD[scon]}, {EV[Log[scon]], SD[Log[scon]]},
Idf[cdf = Cdf[scon], (.5, .95}1}

{{0.0223333, 0.0296222}, {-3.87976, 0.32201}, {0.0206538, 0.0300832}}

Take [Sort [scon], ~10]

{0.074688, 0.0801479, 0.0871134, 0.0963267, 0.109112, 0.128074, 0.159096,
0.218571, 0.372219, 1.23676}
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A. Concentration

PlotCdf[cdf, Xmin -» ~.001, Xmax -> .05];

1 .
0.8
0.6
0.4
0.2

0 001 002 0.03 004 0.05

scdf = StandardizeCdf [cdf, 404];

WriteMatrix["BogenHD:Desktop Folder:concentration.txt", N[scdf]];

u Log-Transform Utility Functions (where X = LogY)

MSDx [GMx_, GSDx_] := Module[ {mux, sigy}.,
sigy = Log[GSDx];
mux = GMx EA ((sigy+2) /2);
mux {1, Sqrt[E4 (sigy*2) -11}]

GMGSDx [Mx_, SDx_] := Module[ {muy, sigy}.,
sigy = Sqrt[Log[l + (SDx/Mx) *2]]:
muy = Log [Mx] -~ (8igy*2) /2;

E4 {muy, sigy}]

end
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B. Intakes

Appendix 2.B

Intakes

2-17-99 (updated 4-26-99)

<< RiskQ';

m Log-Transform Utility Functions

GMGSDX: :usage = “GMGSDx[Mx,SDx] returns the geometric mean and geometric sdandard
deviation of a lognormal variate X that also has the specified arithmetic mean Mx
and arithmetic sdandard deviation SDx, based on the method of moments.*;

MSDx: :usage = "MSDx[GMx,GSDx] returns the arithmetic mean and arithmetic sdandard
deviation of a lognormal variate X that also has the specified geometric mean GMx
and geometric sdandard deviation GSDx, based on the method of moments.*;

GMGSDx1::usage = “GMGSDx1 [cvWant,cv2] returns the GM and GSD of a lognormal variate
X1, such that the product X1sX2 has the desired coefficient of variation (CV) =
cviWant, conditional on the lognormal variate X2 having an arithmetic
mean and CV equal to 1 and cv2, respectively, based on the method of moments.";

MSDx [GMx_, GSDx_] := Module[ {mux, sigy},
sigy = Log[GSDx] ;
mux = GMx E4 ((sigy+2) /2):
mux {1, Sqrt[E4 (sigy+2) -1]}]

GMGSDx [Mx_, SDx_] := Module[ {muy, sigy}.,
sigy = Sqrt [Log[1 + (SDx/Mx) 42]];
muy = Log [Mx] - (sigy42) /2;

E4 {muy, sigy}]

GMGSDx1{cvWant__, cv2_] := Module [ {myl},

g

cv2? 41
muyl = Log'[Sqrt [-——;—-—
cvWant® + 1

EA {muyl, Sqrt[-2muyl]}
] /; cvWant >= cv2
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B. Intakes

B2

m Data on 1998 U.S. Populatic;n

dat =
Partition[{5, 18983, 10, 19928, 15, 19268, 20, 19535, 25, 17768, 30, 18545, 35, 20014,
40, 22602, 45, 21962, 50, 18978, 55, 15907, 60, 12587, 65, 10332, 70, 9530, 75, 8782,
80, 7227, 85, 4739, 90, 2554, 95, 1105, 100, 322, 105, 64}, 2];
TBL{data = Data[dat, {Age, temp}, Append -> {Pop, 1000 « temp},
Drop -> temp, Append -> {{Fpop, 1. Pop/ (Plus@@Pop), 1},
{CFpop, SUM[Fpop], 1}}]1]

Age Pop Fpop CFpop
5 18983000 0.0701173 0.0701173

10 19928000 0.0736078 0.143725
15 19268000 0.07117 0.214895
20 19535000 0.0721562 0.287051
25 17768000 0.0656295 0.352681
30 18545000 0.0684995 0.42118

35 20014000 0.0739255 0.495106
40 22602000 0.0834848 0.578591
45 21962000 0.0811208 0.659711
50 18978000 0.0700988 0.72981

55 15907000 0.0587555 0.788566
60 12587000 0.0464925 0.835058
65 10332000 0.0381632 0.873221
70 9530000 0.0352009 0.908422
75 8782000 0.032438 0.94086

80 7227000 0.0266943 0.967555
85 4739000 0.0175044 0.985059
90 2554000 0.00943368 0.994493
95 1105000 0.00408153 0.998574
100 322000 0.00118937 0.999764
105 64000 0.000236396 1.

tpop = Plus@@Data[data, Pop]

270732000
12 years and over: 200899000

{plo, phi} = Data[data, CFpop] [[{2, 3}]]:
pwant = plo + (phi -plo) 2/5;
{plo, pwant, phi}

{0.143725, 0.172193, 0.214895}

{£f12 = pwant, fl2p =1 - £12, £12 + £12p}

{0.172193, 0.827807, 1.}
18 years and over: 200899000

£2 = 2 Data[data, CFpop] [[1]]/5:

£18p = 200899000. / tpop;

£18 =1 - £2 - £18p;

{wl, w2, w3, ww} = (£2, £18, £18p, £2 + £18 + £18p}

{0.0280469, 0.229895, 0.742059, 1.}
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B. Intakes

m Ingestion (L/kg-d) Ershow énd Cantor, 1989, Table 36 p. 76

age = {1, 10, 20, 65, 65 plus};

w= {87.7, 1127.2, 1197.8, 3960.7, 697.0} /7070.4;
ingest = {53.2, 38.7, 18.4, 21.4, 23.1} /1000;
sd = {50.9, 23.8, 10.7, 12.2, 9.7} /1000;

gmgsd = MapThread [GMGSDx [#1, #2]&, {ingest, sd}]

{{0.0384398, 2.23934}, {0.032965, 1.76188}, {0.0159061, 1.71553}, {0.0185911, 1.69976},
{0.0212984, 1.49628}}

Pluseew
1.
cdfs = LogNormalCdf [#[[1]], #([[2]], 1000]& /@Log[gmgsd];

adf = AverageCdf[cdfs, Weights ~> w];
Dimensions[adf]

{5001, 2}

gim = SimulateCdf [cdfs, 5000, Report -> False];
cdfTWA = CAf[Pluse@ (wxsim)];

cdfTWAcorrected = CAf [Plusee ({1, 10, 9, 45, 5} +s8im/70)];

{gm, gsd) = GMGSDx[24.2 /1000, 17 /1000];
{{gm, gsd}, Log[{gm, gsd}], 17/24.2}

{{0.0198023, 1.88387}, {-3.92196, 0.63333}, 0.702479}

cdfErCan = LogNormalCdf [-3.92195619921997042", 0.633330172027946325", 200];

PlotCAf | {cdfTWA, adf, cdfExCan}, Xmin - -.0001, Xmax » .06];

1
0.8
0.6
0.4
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0 0.01 0.02 0.03 0.04 0.05 0.06
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PlotCAf [{cdETWA, cdfTWAcorrected}, Xmin - -.0001, Xmax - .06];

1
0.8
0.6

04
0.2

0 001 0.02 003 0.04 005 0.06

{EV[#], sD{#], TAE£(#, (.5, .95}]}& /@ {cAfTWA, cdfTWAcorrected, adf, cdfExCan}

{{0.0241953, 0.00802976, {0.0227623, 0.0390576}}, {0.0240441, 0.00862608,

{0.0223285, 0.0398658}}, {0.024215, 0.0170167, {0.0200231, 0.054078}},
{0.0242229, 0.0170924, {0.0198023, 0.0561224}}}

end

m SABW Ratio calculations

= Distribution of Body Surface Area to Body Weight (cm2/kg) Ratio (Phillips et al., 1993)

rp = {0, 5, 10, 25, 50, 75, 90, 95, 100} /100.;

ratio = {
{421, 470, 507, 563, 617, 719, 784, 846, 1142},
{268, 291, 328, 376, 422, 454, 501, 594, 670},
{200, 238, 244, 270, 286, 302, 316,329, 351}}*1.;

cdfs = Transpose [ {#, pp}]&/@ratio;
PlotCAf [cdfs] ;

1
0.8
0.6
04
0.2

200 400 600 800 1000
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n sabwALL

adf = AverageCdf [cdfs, Weights -> {wl, w2, w3}];
Plotcdf [adf, Xmin -> -.01, Xmax -> 800];

1
0.8
0.6
0.4
0.2

0 200 400 600 800

TBL[adf]

200. O

238.  0.0371029
244.  0.0742059
268.  0.176952
270. 0.186514
286. 0.380025
291.  0.440497
302. 0.571456
316. 0.687114
328.  0.725091
329. 0.728664
351. 0.781572
376. 0.799532
421. 0.855756
422. 0.857034
454. 0.915424
470.  0.927621
501. 0.951541
507. 0.95251
'563. 0.963639
594. 0.971495
617. 0.97796
670. 0.98962
719. 0.992988
784. 0.997195
846. 0.998598
1142. 1.

(EV[adf], Idf[adf, .95]}

{325.881, 499.003}

WriteMatrix["BogenHD:Desktop Folder:sabwratioALL.txt", adf]:
{x, ¥} = Transpose [Rest [Drop[adf, -1]]]

{{238., 244., 268., 270., 286., 291., 302., 316., 328., 329., 351., 376.,
421., 422., 454., 470., 501., 507., 563., 594., 617., 670., 719., 784., 846.},
{0.0371029, 0.0742059, 0.176952, 0.186514, 0.380025, 0.440497, 0.571456, 0.687114,
0.725091, 0.728664, 0.781572, 0.799532, 0.855756, 0.857034, 0.915424, 0.927621,
0.951541, 0.95251, 0.963639, 0.971495, 0.97796, 0.98962, 0.992988, 0.997195, 0.998598}}
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B6

Xy = Transpose [ {NormalCdf [y, Inv], x}]

{{-1.78534, 238.}, {-1.44516, 244.}, {-0.927042, 268.},

{-0.890815, 270.}, {-0.305415, 286.}, {-0.149709, 291.}, {0.180083, 302.},
{0.487687, 316.}, {0.598033, 328.}, {0.608776, 329.}, {0.777512, 351.},

{0.839952, 376.}, {1.06145, 421.}, {1.06709, 422.}, {1.37493, 454.},

{1.4583, 470.}, {1.65998, 501.}, {1.66969, 507.}, {1.79457, 563.}, {1.90324, 594.},
{2.01334, 617.}, {2.31232, 670.}, {2.45666, 719.}, {2.76978, 784.}, {2.98837, 846.}}

PlotDatalxy];

800
700 °
600 ®
500 6

400 °

300 00 0 &

end

m sabwTWA

{nsam, nsim} = {2000, 10};

Clear([£fxn]};

fxnfal_, a2_, a3_] :=Plusée ({al, a2, a3} {
2, 16, 52} /170)

Timing[{jen, cdf, cvm} = QUAnalyze[cdfs, fxn, nsam, nsim];]

{233.983 Second, Null}

TBL/@jen

Mean[Ar] Max[|Ar}] JennrichChi2 DegFr Pval
{ -0.000142045 0.017043 0.775025 3 0.855431 "
Fractile Value CVM (%)

0.01 259.77 0.362611

0.05 279.448 0.0700455

0.5 326.046 0.0251131

0.95 373.11 0.0744586 }

0.99 393.457 0.15432

Mean 325.884 0.+4.93556x1077 T

Variance 777.661 0.230742
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PlotCdf[{cvm, cdf}, Ymin - -.01, Xmin -» 225, Xmax - 430];

1
0.8
0.6
0.4

0.2
0

250 300 350 400
Sqrt [777.660703210145509]

27.8865685090537002

{EV[cd£f, Empirical -» Tr\;e] ;s SD{cdf, Empirical -> True], Idf[cdf, {.5, .95}]}
{325.884, 27.8746, {326.046, 373.11}}

sdf = StandardizeCdf [cdf, 404];

{EV[8df, Empirical -> True], Idf([=df, {.5, -95}]}

{325.875, {326.046, 373.235}}

WriteMatrix["Bogen's:Desktop Folder:sabwratioTWA.txt", sdf];

{x, ¥y} = Transpose [Rest [Drop[cdf, ~1]]1]:

xy = Trangpose [ {NoxrmalCdf [y, Inv], x}];
£it = FIT[xy, {1, X}, X, Report - True];

Coef LS Est. SD 95%LCL 95%UCL
q{0] 325.884 0.0240524 325.837 325.931
afl] 27.9467 0.0241325 27.8994 27.994

R%= 0.998512
F(1,1998)= 1.34108x10% 2-tail p= 3.7487211392x1072%%7

PlotData[xy, FitTo » {fit . {1, X}, X}];

400

350

300

250

-3 -2 -1 0 1 2 3
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end

end

m Inhalation (L/kg-d) OHEA. 1996. Stochastic Analysis, p. 3-31 - 3-32.

pval = .01 (1, 5, 10, 25, 50, 75, 90, 95, 99, 100 (1-15797)};

zval = NormalCdf [pval, Inverse];

yAdult = {112.8, 171.4, 179.7, 185.2, 206, 245.6, 295.1, 366.6, 494, 638.8};
yChild = {342.5, 364.5, 375, 401.5, 441, 489.5, 540.5, 580.5, 663.3, 747.5};
{zyA, zyC} = Transpose[{zval, Log[#]}]&/@ {yAdult, yChild};

Option 1 (Not Used): Calculate lognormal parameters from OHEA data

Clear([x];

{my, sy} = FIT[zyA, {1, %}, x];
{gm, gsd} = E4* (my, sy};

{{gm, gsd}, MSDx[gm, gsd]}

{{231.574, 1.32974}, {241.172, 70.1495})

Plotbata{zyA, FitTo -> {my + sy +x, x}];

6.5
6.25
6t
575}
5.5}
5.25
5
4.75

{my, sy} = FIT[zyC, {1, x}, x];
{gm, gsd} = E4 {my, sy};
{{gm, gsd}, MSDx[gm, gsd]}

{{456.675, 1.15697}, {461.555, 67.6548}}
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PlotData[zyC, FitTo -> {my + sy +x, x}];

6.6

s

6.4

6.2

6

5.8

2 -1 0 1 2 3

Option2 (Used): Use lognormal parameters derived from reported OHEA mean and SD values for Adult and Child
distributions

{mA, sdA, mC, sdC} = {225.2, 64.634, 452, 67.73};
{{gmA, gsdA} = GMGSDx{225.2, 64.634],

{gmC, gsdC} = GMGSDx[452, 67.73],

{cvA, cvC} = {sdA /mA, 8dC/mC}}

{{216.461, 1.32491}, {447.009, 1.16069}, {0.287007, 0.149845}}

{inhA, inhC} = SimulateCdf[ {{LN, Log[{gmA, gsdAa}]}, (LN, Log[{gmC, gsdC}]}}, 5000];
cdfs = Cdf /@ {(inhA, inhC};
PlotCdf [Reverse[cdfs]];

Output-Sample Rank-Correlation Matrix:

1. 0.000314
0.000314 1.

Jennrich's Asymptotic Chi-Square Test of Homogeneity
Between Input & Target Correlation Matrices
For 5000 2-Variate Normal Samples:

Chi2(1)= 0.000492816 1-tail p= 0.982289 (NS)

1
0.8
0.6
0.4
0.2

100 200 300 400 500 600 700

From Finley et al. 1994 (CalEPA 1996, p. 10-7), the BW distribution for adult males & females is ~LN and CV[BW] =
~0.22:
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{ev, 8d} = (71., 15.9}; )
{ev=8d/ev, {BWgm, Bugsd} = GMESDx[ev, sd], Log[{BWgm, BWgsd}]}

{0.223944, {69.2839, 1.24759}, {4.23821, 0.22121}}

From CalEPA/OHEA (1996, Stochastic Analysis, p. 3-31 - 3-32; cit. above), cvA = CV[24*Q/BW] = CV[Qtot/BW] = ~
0.3, where Q denotes total ventilation rate in L/h. From Allen and Fisher (1993), alveolar ventilation rate in L/h is modeled
as Q ~ 12.9*BW20.7, and Qtot ~ kQ for some constant k. Now let VQ be LN-distributed with an arithmetic mean of 1,
where VQ represents variation in Q not attributable to that in BW. Thus, Q ~ 12.9¥VQa*BW~.7, whence Q/BW ~
12.9*VQ*BW~-0.3. It follows from the method of moments that CV[BWA-.3] = CV[BWA.3] = 0.06644, whence CV[{VQ] =
0.2919, GM[VQI = 0.9599, GSD[VQ] = 1.331, Log[{ GM[VQ}, GSD[VQ]}] = {-0.0408868, 0.285961}.

{{ol, 02} = MSDx[a BWgm*-.3, BWgsd*-.3], cvBW3 =02 /01}

{{0.281039a, 0.0186711a}, 0.066436}

{o = GMGSDx1[0.3, cvBW3], {muyX, sdyX} = Log{o]}

{{0.959938, 1.33104}, {~0.0408868, 0.285961}}

{{mX, sdX} = MSDx€@o, cvX = sdX /mX}

{{1., 0.291908}, 0.291908}
(* By definition, the CV of (BWA.3 * X) = %)

{Sqrt[E* (sdyX42 + Log[BWgsd+ .3]142) -1],
((L+cvBW3A2) (L+ecvXka2) -1) 4.5}

{0.3, 0.3}

s InhaleALL

{£12, £12p)

{0.172193, 0.827807}

adf = AverageCdf[cdfs, Weights -> {£12p, £12}];
sadf = N[StandardizeCdf [adf, 404]];

PlotCdf [sadf, Xmin -» -.001, Ymin-» ~.001];

1
0.8
0.6
0.4

0.2

O . R
0 100 200 300 400 500 600 700
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Bl11

{EV[#], sD[#], Xdf[#, (.5, .95}]}&/@ {adf, sadf)

{{264.165, 107.491, {233.106, 487.138}}, {264.165, 108.051, {233.106, 487.146}}}

N[{{pA, pC} = EA£[#, 487.138]&/@cdfs, wp = (£12p+pA, £12+pC}, Pluseewp}, 10]

{{0.9982290631, 0.7181436766}, {0.8263408411, 0.1236594327}, 0.9500002739}

Log[x /gmA]
Log[gsdA]

Log[x / gmC]

]+f12 NormalCdf[ P
g[gs

[flzpworma1Cdf[

{0.949947, 0.949956, 0.949964, 0.949972, 0.949981, 0.949989, 0.949997, 0.950006,

0.950014, 0.950023}

. . . \ Log [x / gmA]
N [FJ.ndRoot [flzp CDF [Nomlnzstrlbut:.on 0,11, —mmm8m88 —

Log[x / gnC] ] _

£12 CDF [NormalDistribution[0, 1],
Log [gsdC]

16]
{x > 487.3630111243049}

WriteMatrix["“"BogenHD:Desktop Folder:inhaleALL.txt", sadf];

u InhaleTWA

{{£f12p, £12}, {£12p, £12} 70}

{{0.827807, 0.172193}, {57.9465, 12.0535}}

{nsam, nsim} = {2000, 10};

Clear{fxn];

fxn[al_, a2_] := Plusee ({al, a2} {
58, 12} /70)

Timing[{jen, cdf, cvm} = QUAnalyze [cdfs, fxn, nsam, nsim];]

{143.533 Second, Null}

TBL/@jen

Mean{Ar] Max(% Jennr1chCh12 DegFr Pval
0 0010747 0.0 457 3 .178882 1 0.672335"

Fractile Value CVM (%)

0.01 166.336 0.275487
0.05 187.965 0.14204

0.5 257.154 0.0674972
0.95 362.928 0.17087 }
0.99 424.294 0.272136

Mean 263.865 7.46556x1077
Variance 2937.4 0.0463849

]+
Log[gsdA]

=95/100, {x, 485, 480, 490}],

]) /. x> Range[487.3, 487.4, .01]
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PlotCAf[{cvm, cdf}, Ymin -+ -.01, Xmin -~ 95, Xmax » 430];
1 :
0.8
0.6
0.4
0.2

0
100 150 200 250 300 350 400

{EV{cdf, Empirical -> True], SD[cdf, Empirical -»> True], Idf[cdf, {.5, .95}]}

{263.865, 54.1887, {257.154, 362.928}}

sdf = StandardizeCdf [cdf, 404];
{EV[sdf, Empirical -> True], SD[sdf, Empirical -> True], Idf[sdf, (.5, .95}1}

{(263.752, 53.5784, {257.154, 362.847}}

WriteMatrix["Bogen's:Desktop Folder:inhaleTWA.txt", sdf];
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C. Residence a1

Appendix 2.C

Fraction of Lifetime at One Local
Residence

<< RigkQ;

HardDrive = "Bogen";

PathName [filename_ , hardDrive_String: HardDrive] := Module[{file = filename},
If[Head[file] =1= String, file = ToString[file]];
StringJoin[hardDrive, ":Ken:TCE Air Force:Data:", file]

1:

m Israeli, M., and C. Nelson. 1992. Distribution and expected time of
residence for U.S. housholds. Risk Anal. 12, 65-72.

St = E-(81+bl (1-E*(-t/bl)) +a2 t+a3sbd (X4 (t/b3)-1)) :

pt =8t ((al*x (E4~(t/bl))) +a2+ (a3 % (EA(t/Db3))));:

pt
Rtz —m ——;
al+a2+a3

Coefficients a and b all have units of y~'and y, respectively, from Israeli and Nelson Table II (All households, W-Rgn)

u All households

ruleA = Ruleéeis /@Transpose [{{al, bl, a2, a3, b3}, {.1503, 1.88, .0679, .0015, 13.3}}] ;
{St, Rt, RtrA = (Rt /. xruled)}

E-al bi (l—E-F':T]—aIJ b3 (-—1+E5%—)—32 t (a2 +al E“Btl‘ +a3 E‘BtT)

al +a2+a3
E-0-282564 (1-E70-531915t) ¢ 01995 (-1+E9-075188 t) o 0679 ¢ (0.0679 + 0.1503 g0-531915t g 015 EO0-075188 £) }

~albl [1-3'%)-«:3 b3 [—1+E5t§_]-a2 t
{E , 4.55166

‘

({St, pt, Rt} /. Append[xruleA, t -> #])&/@{0, 50}

({1, 0.2197, 1.}, {0.0109554, 0.00144923, 0.00659639}}
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C. Residence : C2

Plot[Log[10, Evaluate[St /. ruleA]], {t, 0, 50},
AxesOrigin -> {0, -3.01}, PlotRange -> { {0, 50}, {-3.01, 0}}, Frame -> True];

0
-0.5
-1
-15
-2
~2.5

10 20 30 40 50

Plot[Log[10, Evaluate[RtxA]], {t, 0, 50},
AxesOrigin -> {-0.01, -3.01}, PlotRange -> {{-.01, 50}, {-3.01, 0}}, Frame -> True];

0
~0.5
-1
~1.5
—2
—25
-3

0 10 20 30 40 50

n Western Region
ruleW = Rule@@#& /@ Transpose [{ (al, bl, a2, a3, b3}, {.2029, 1.74, .0832, .0008, 10.3}}]
{a1->0.2029, b1 »1.74, a2 »0.0832, a3 -» 0.0008, b3 -»10.3}

RtxW = (Rt /. ruleW)

3.48554 g-0-353046 (1-E™9-574713 ty g 00824 (-1+E0-0970874 t) ¢ 0832 ¢ (0.0832 + 0.2029 E0-574713¢ L o gpgg E0-0970874 c) .

({st, pt, Rt} /. Append[ruleW, t -> #])&/@(0, 50}

{{1, 0.2869, 1.}, {0.0038411, 0.00071383, 0.00248808)}
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Plot[Evaluate[Log[10, (St /. #)&/@ {ruleA, rulew}]]}, {t, 0, 50},
AxegOrigin -> {0, -3.01}, PlotRange -> {{0, 50}, {-3.01, 0}}, Frame -> True];

0
-05
-1
-15
-2
25

10 20 30 40 50

Plot [Evaluate[Log[10, {RtxrA, Rtxrw}]], {t, 0, 50},
AxesgOrigin -> {~0.01, -3.01}, PlotRange -> {{-.01, 50}, {-3.01, 0}}, Frame -> True];

0
~0.5
-1
-1.5
-2
—2.5
-3

0 10 20 30 40 50

m Adaptation of model to account for fraction Fm of moves that are out of a
Western-region water distribution system

{RtxW, (RtzW /.t -> #)&/@{0, 50, 70}}

{3.48554
E-0-353046 (1-E-0-574713 ty g 00824 (-1+E0-9970874 t) g 0832 ¢ (0.0832 +0.2029 E-0-574713¢ g goog Eo-0970874 c) ,

{1., 0.00248808, 3.67283x107°}}

1 2 1 2
{fm:.o=—-+ — — 0.05, meat:—}
3 3 3 3

{0.438743, 2}

time = Join[Range{0, 10, .1], Range[1l1l, 50], Range[55, 70, 5]];
Mt = ((1-RtxrW') /. t -> time);

MtFmHat = ((1 - RExW™™t) /, £ -> time);

MtFulo = ( (1 - RExW™®) /. t -> time);

{cdfTR, cdfTRFmHat, cAfTRFmLo} =
Append [Drop [Transpose[{time, #}]1, -1], {70, 1}]&/@ {Mt, MtFmHat, MtFmLo};
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C4

RtxW/. t ->1

0.544555

PlotData[ {cd£TRFmLo, cAfTRFmHat, c¢dfTR}, Xmin -» -,.01, Xmax -> 70, Ymin -> 0, Ymax -> 1,
DotsSize -> {.0001, .008, .0125}, Style -> O,
JoinPoints -> True, FitTo -> {RtxW, t}]:

1
0.8
0.6
0.4
0.2

0 10 20 30 40 50 60 70
{EV[cdfTR], Sqrt[Var[cdfTR]], IdE[cdETR, {.025, .5, .95, .975}])

{3.48741, 6.83815, {0.0378193, 1.16603, 17.0596, 25.4481}}

{EV[cAfTRFmHat], Sqrt[Var[cdfTRFmHat]], Idf[cdfTRFmHat, {.025, .5, .95, .975}]}

{7.02862, 11.8589, {0.0560921, 1.9295, 35.0626, 46.1341}}

{EV[cA£TRFmLo], Sqrt[Var[cdfTRFmLo]], IAf [cAfTRFmLo, {.025, .5, .95, .975}1}

{12.9946, 17.7241, {0.0845741, 3.63964, 55.2843, 61.7931}}

Rt = (RtxW /. £t -> time);
xy = Append [Drop [Transpose [{time, Rt}], -1], {70, 0}];:
IRt = Interpolation[xy, InterpolationOrder -> 1];

10.5/16.(x = US fraction moving to same county =*)

0.65625

fms = SimulateCdf[{Tri, {1/3, 2/3, 1}}, 2000];
IdE[CAf[fms], .05]

0.438716
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Cs

PlotCdf[CAf[£fmsg]]:

1
0.8
0.6
0.4
0.2

02 04 06 038 1
tRange = Prepend[time, t];
Tbar = NIntegrate[IRt[t] 4#, Evaluate[tRange] ]&/€fms;
cdfTbhar = CAf [Tbar];

PlotCdf [cdfTbar, Xmin -> -,.01, Xmax -> 16];

1
0.8
0.6
0.4
0.2

0 25 5 75 10 125 15
{EV[Tbar], Sqrt[Var[Tbar]], Idf[cdfTbar, {.025, .5, .975}]}
{7.5984, 2.67068, {4.00903, 7.03101, 14.2792}}

D[a*Fm, {Fm, 2}]

a™ Logla]?

cdfFm = TriangularCdf[1/3, 2/3, 1, 500];

(EV[cdfFm], Var[cdfFm])}

{0.666667, 0.0185294}

cdfFm = TriangularCd£[1/3, 2/3, 1, 10000];
{EV[cd£Fm], Var[cdfFm]}

{0.666667, 0.0185186}
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C. Residence

C6

0.01851864649655809994 -1

53.999626818615568

Rti = Transpose [xy] [[2]]:
fmBar =2/3;
fmVar =1/ 54;

. . Log[Rti]?
pi=1-|(Rti*fmBar) |1+ —-—2—- fmVar| | ;

pi = Append[Drop(pi, -1], 1]:
cdfTangbr = Transpose[{time, pi}];

PlotCdf [cdfTangbr, Xmin -> - .01, Xmax -> 70];

1

0.8
0.6
0.4
0.2

0 10 20 30 40 50 60 70
PlotCdf [ {cdfTangbr, cdfTbar}, Xmin -> -.01, Xmax -> 70];

1
0.8
0.6
0.4
0.2

0 10 20 30 40 50 60 70

{EV[cdfTangbr], Sqrt[Var[cdfTangbr]], Idf[cdfTangbr, {.025, .5, .975}]}

{7.55321, 12.748, {0.0561443, 1.96772, 49.7245}}

s8d£Thar = StandardizeCdf [cdfTbar, time];

TBL[out = Prepend [Transpose|[{time, N[Last /@sdfTbar, 8],
N[Last /@cdfTangbr, 8]}], {Time, FThar, FTangbr}]]

'(I)‘ime gTbar gTangbr

0.1 0.000014065155 0.044528152

0.2 0.00002813031 0.085900584
0.3 0.000042195465 0.12439054

C6



C. Residence

C7

R e .

e s s s

. o

0.00005626062
0.000070325776
0.000084390931
0.000098456086
0.00011252124
0.0001265864
0.00014065155

'0.00015471671

0.00016878186
0.00018284702
0.00019691217
0.00021097733
0.00022504248
0.00023910764
0.00025317279
0.00026723795
0.0002813031
0.00029536826
0.00030943341
0.00032349857
0.00033756372
0.00035162888
0.00036569403
0.00037975919
0.00039382434
0.0004078895
0.00042195465
0.00043601981
0.00045008496
0.00046415012
0.00047821527
0.00049228043
0.0013753219
0.0046798441
0.0097212226
0.016294389
0.024222899
0.033351911
0.043545234
0.054682977
0.066658284
0.079376907
0.092754949
0.10671755
0.12119799
0.13613655
0.15147976
0.16717972
0.18319323
0.19948154
0.21600975
0.23274635
0.24966287
0.26673362
0.28393535
0.30124702
0.31864953
0.33612562
0.3536596
0.37123722
0.38884558
0.40647292
0.4241086
0.44174292
0.45936707
0.47697308
0.49455365
0.51196343
0.52877535
0.54498488
0.56061815
0.57570017
0.59025445
0.60430319
0.61786745
0.63096716
0.6436211
0.65584727
0.66766265
0.67908339
0.69012475

OO0O0O0O0OOOOOCOOOOOOOCOOOODOOO0O

feY=YololeleTel=to1e1o1e o t=etelolelelolalolofalalolalolrlolelalolofolaololofofolololofofolelelololelefole o)

.16024284

.19367728
.22489166

.25406435-

.2813565

.30691402
.33086927
.35334255
.37444339
.39427172
.41291884
.43046832
.4469968

.46257462
.47726652
.49113209
.50422633
.51660002
.52830013
.53937017
.54985047
.55977846
.56918892
.57811422
.58658448

.

59462778

.60227029
.60953645
.61644911
.62302958
.62929784
.63527256
.64097123
.64641023
.65160492
.6565697

.66131805
.66586267
.67021542
.67438749
.67838933
.68223081
.68592116
.68946908
.69288271
.69616975
.69933738
.70239239
.70534116
.70818966
.71094353
.71360807
.71618824
.71868873
.72111394

72346801

.72575483
.72797806
.73014114
.73224731
.73429961
.7363009

.73825388
.74016109
.74202489
.74384753
.74563113
.74737765
.74908897
.75076684
.75241291
.75402873
.75561577
.75717539
.7587089

.7602175

.76170234
.76316451
.76460501
.7660248

.76742478
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C. Residence

C8

WWWLWLW WD LWL K
CVOIONB WK VoI,

R R R R R R R R R R R R R R R R R R R R R R R R R R R PR R R R RO 000 0000000000000 000000

.70080134
.71112707
.72111508
.73077791
.74012765
.74917561
.75793282
.7664095

.77461566
.78256085
.79025397
.79770389
.80491887
.81190674
.81867513
.82523141
.88053089
.9207822

.9498595

.97047554
.98457918
.99360366
.99861864

0.76880579

0.77016864

0.77151407

0.7728428

0.77415548
0.77545275
0.77673519
0.77800336
0.7792578

0.78049899
0.7817274

0.78294347
0.78414763
0.78534025
0.78652171
0.78769236
0.79886871
0.80923462
0.81893815
0.82807078
0.83669313
0.84484873
0.8525714

0.85988918
0.86682654
0.87340553
0.8796464

0.88556805
0.89118824
0.89652371
0.90159033
0.90640318
0.91097659
0.91532422
0.91945913
0.92339381
0.9271402

0.9307098

0.93411365
0.93736239
0.94046627
0.9434352

0.94627875
0.94900617
0.9516264

0.95414801
0.95657927
0.95892806
0.96120185
0.96340761
0.9655518

0.96764026
0.96967807
0.97166952
0.97361794
0.97552559
0.98444368
0.99193758
2.99706939

Put [out, PathName [Tbarang]]:
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D. Effective Genotoxic Dose D1

Af)pendix 2.D

Effective Genotoxic Dose

<< RiskQ";

HardDrive = "Bogen";

PathName[filename_, hardDrive_String: HardDrive] := Module[{file = filename},
If [Head[file] =!= String, file = ToString(file}];
StringJoin{hardDrive, ":Ken:TCE Air Force:Data:", file]

1:

m Input Empirical (Derived) Distributions

Recreate Input Distributions from Phase I study. Exposure in mg/kg-d.

m Log-Transform Utility Functions

GMGSDX: :usage = "GMGSDx{Mx,SDx] returns the geometric mean and geometric sdandard
deviation of a lognormal variate X that also has the specified arithmetic mean Mx
and arithmetic sdandard deviation SDx, based on the method of moments.";

MSDx: :usage = "MSDx[GMx,GSDx] returns the arithmetic mean and arithmetic sdandard
deviation of a lognormal variate X that also has the specified geometric mean GMx
and geometric sdandard deviation GSDx, based on the method of moments.*“;

GMGSDx1: :usage = "GMGSDx1[cvWant,cv2] returns the GM and GSD of a lognormal variate
X1, such that the product X1x+X2 has the desired coefficient of variation (CV) =
cviWant, conditional on the lognormal variate X2 having an arithmetic
mean and CV equal to 1 and cv2, respectively, based on the method of moments.*®;

MSDx [GMx__, GSDx_] := Module[ {mux, sigy},
sigy = Log[GSDx] ;
mux = GMx E4 ((8igy42) /2);
mux {1, Sqrt[E4* (sigy*2) - 1]}]

GMGSDx[Mx_, SDx_] := Module[ {muy, sigy},
sigy = Sqrt[Log[1 + (SDx/Mx) 42]];
muy = Log [Mx] - (sigy+2) /2;
E+ {muy, sigy}]

GMGSDx1 [cvWant_, cv2_] := Module|[ {myl},

1]s

ev2? 41
muyl = Log [Sqrt [————-—
cviWant? + 1

EA {muyl, Sqrt{-2muyl]}
] 73 cvWant >= cv2

D1



D. Effective Genotoxic Dose D2

SABW = ToExpression[ReadList [PathName ["sabwratioALL.txt"], Word, RecordLists -> Truel];

Inhale = ToExpression [ReadList"’[PgthName ["inhaleALL.txt"], Word, RecordLists -> True]];
(*Note: Inhale in L/kg-d %)

Conc = ToExpression[ReadList [PathName["concentration.txt"], Word, RecordLists -> Truel];
(*Note: Conc in mg/L +)

Tharang = Rest [Get [PathName [Tbarang]]]:

TresBar = #[[{1, 2}]]&/@Tbarang;

TresAng = #[[{1, 3}]]&/@Tbarang;

Dimensions /@ {SABW, Inhale, Conc, TresBar, TresAng}

({27, 2}, {405, 2}, {405, 2}, {145, 2}, {145, 2}}

EV /@ {SABW, Inhale, Conc, TresBar, TresAng}

{325.881, 264.032, 0.0229323, 7.59939, 7.55321}

{BW, Vmet, VQ} = .
{{iN, {4.23821, 0.22121}},
{LN, {-0.15154, 0.550528}}, {LN, {-0.0408868, 0.285961}}};

m Constants

end

{TresBarAng, TresAngBar} = EV[#, Empirical -> True]& /@ {TresBar, TresAng}

{7.59939, 7.55321}

. 0.74-1 24

inhalebar = 12.9 + 71" * (* m3/kg-d *)
1000

0.102205

EFcon = 350; (* d/y *)

ATcon = 25550; (* d *)

ConcAng = 0.0223; (* mg/L *)

IngestBar= 0.0242; (* L/kg-d *)
InhaleBar = 0.102; (* m3/kg-4d ¥*)
SABWBar = 325.881; (* cm2/kg *)
TresBarAng= 7.59358;(* y *)
TresAngBar= 7.55321;(* y *)

m Fractions metabolized (summary-see "E. Effective Cytotoxic Dose")

Correlation between Vmet and Fmo = 0.86
Correlation between VQ and Fmr = -0.75
Correlation between Vmet and Fmr = 0.45

Fmo = Get [PathName [Fmo] ] ; Fmr = Get [PathName [Fmr]];
cdfQ /e {Fmo, Fmr}

{True, True}

{FmoBar, FmrBar} = {0.888543, 0.6732836};
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D. Effective Genotoxic Dose

v}

(7%)

end

Note:

All distributions below are multiplied by Scale—~1000

actinn
A A AT

m EingBar = Uncertainty in Population-Average Level

{TresBar,Conc} = uncertain variates

{nsam, nsim} = {2000, 10};
cdfs = {TresBar, Conc};
Clear[fxn];

EFcon
fxn(t_, c_] := IngestBarxt

ATcon

fxn [TresBarAng, ConcAng]

0.0000498795

¢ « FmoBar

Timing[{jen, cdf, cvm} = QUAnalyze [cdfs, £xn, nsam, nsim, Scale - 1000];]

{200.817 Second, Null}

TBL/@jen

Mean[Ar] Max [ {Ar|]
-0.00355814 0.0158828 0.504529

{First[cdf], Last[cdf]}

{{0.000853119, 0}, {4.43688, 1}}

1

JennrichChi2 DegFr Pval

0.477517"

Fractile
0.01
0.05

0.5

0.95
0.99
Mean
Variance

value CVM(%)
0.0143149 2.23118
0.0230076 0.210285
0.0429802 0.168471
0.0889072 0.414161
0.134017 1.78008
0.0507837 0.514653
0.00710812  18.3718
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D4
PlotCdf[{cvm, cdf}, Ymin - -.01, Xmin -+ -,0001, Xmax - .125];
1
0.8
0.6
04
0.2
0 -
0 0.02 0.04 0.06 0.08 0.1 0.12
Put [cdf, PathName [EingestBar]];
end
= <Eing> = Variability in Expected Level
{Ingest,TresAng,Fmo} = heterogeneous variates
{nsam, nsim} = {2000, 10};
Ingest = (LN, {Log[.0198], Log[1.88]}};
cdfs = {Ingest, TresAng, Fmo};
Clear{fxn];
EFcon
fanling , t_, £_] := ing+*t ConcAng » £
ATcon
fxn[IngestBar, TresAngBar, FmoBar]
0.0000496144
Timing[{jen, cdf, cvm} = QUAnalyze[cdfs, fxn, nsam, nsim, Scale -» 1000];]
{47.8167 Second, Null}
TBL/@jen
Fractile Value CVM (%)
0.01 0.000106569 3.27128
0.05 0.000509143 1.43336
{Mean{Ar] Max|[|Ar|] JennrichChi2 DegFr P-adj 0.5 0.0108513 0.866917
0.00168143 0.0152108 0.522666 3 0.995174' 0.95 0.23658 1.24671
0.99 0.531411 4.21273
Mean 0.0491639 0.747214
Variance 0.0111399 5.47589
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D5

PlotCdf[{cvm, cdf}, ¥Ymin -+ -.01, Xmin - -.0001, Xmax - .4];

1
0.8
0.6
0.4
0.2

0
0 0.1 0.2 0.3 0.4

Put [cdf, PathName [EingestAng]];

end

end

m Inhalation Exposure

= EinhBar = Uncertainty in Population-Average Level

{TresBar,Conc} = uncertain variates

{AEshHBar, AEbaHBar, AEhHBar} =1/ (EV/e({

{1./7#[[1]]), #[[2]])&/eRQ[cdEf, U, {4, 20}, 2000],
(1./#[[1]], #[[2]])&/@RQ[Cd£f, U, {10, 100}, 2000],
{1./#%[[1]1], #[[2]]}&/@RQ[CAE, U, {300, 1200}, 2000]})

'{9.94136, 39.0865, 649.213}

cdfs = {TresBar, Conc};

12.9 Tao1 EFcon 1
fxn -» FmrBar *TL " " %1l »t C —
~\ 1000 ATcon 24
.129 .33 .54 14
(480 (.76) + ) +42 (.76 —_—
AEshHBar AEbaHBar .7 AEhHBar

fxn - 0.0000136563 c t

Clear{fxn, jen, cdf, cvm];
fxn{t_, ¢_] :=0.0000136563095583647187 c t

fin[t, ¢] /. {¢ » ConcAng, t -» TresBarAng}

2.31252x107¢

Timing[{jen, cdf, cvm} = QUAnalyze{cdfs, f£xn, 2000, 10, Scale -» 1000];]

{205.55 Second, Null}
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TBL/@3jen

{Mean&Ar% MaxH_Aré JennrichChi2 DegFr Pval
0.000642353 0.01138 0.259415 1 0.610522
Fractile Value CVM(%)

0.01 0.000683362 2.05913

0.05 0.00106135 0.294054

0.5 0.00198916 0.19258

0.95 0.00412975 0.389326

0.99 0.00593213 1.01573

Mean 0.00235084 0.583042

Variance 0.0000146843 23.1052

{First[cdf]}], Last [cdf]}

{{0.0000407589, 0}, {0.209696, 1})}

PlotCdf[{cvm, cdf}, Ymin > -.01, Xmin -+ -.0001, Xmax - .005];

1
0.8
0.6
0.4
0.2

0
0 0.001 0.002 0.003 0.004 0.005

Put [cdf, PathName [EinhaleBar]];

end

m <Einh> = Variability in Expected Level

{Inhale,TresAng, Wshower,Whouse,ETshower,ETbath,EThouse,AEshower, AEbath, AEhouse,
T13,T13,VQ,BW} = heterogeneous variates

gmgsd = GMGSDxe@ #& /@N[ { {480, 160}, (42, 15}, (.129, .052}, {.33, .22}}]

{{455.368, 1.38347}, {39.5532, 1.41408}, {0.119645, 1.47407}, {0.274577, 1.83382}}

{Wshower, Whouse, ETshowexr, ETbath} = ({LN, #}&/@Log[gmgsd])

{{LN, {6.12111, 0.324593}}, {LN, {3.67765, 0.346479}}, {LN, {-2.12323, 0.388026}},
{LN, {-1.29253, 0.606403}}}

{AEshower, AEbath, AEhouse, EThouse} =
({u, #}«/e ({4, 20}, {10, 100}, {300, 1200}, {8, 20}})

{{u, {4, 20}}, {U, {10, 100}}, {U, {300, 1200}}, (U, {8, 20}})
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{InhaleBar, TresAngBar, ConcAng}

{0.102, 7.55321, 0.0223}

{vQ, BW}.

{{LN, {-0.0408868, 0.285961}}, {LN, {4.23821, 0.22121}}}

Correlation between VQ and Fmr =-0.75 (see "E. Effective Cytotoxic Dose")

corr = Table[Table[0, {j}], {j, 13}]:
corr = ReplacePart [Reverse [coxr], -.75, {1, 1}]

{{-0.75, 0, 0,0,0,0,0,0,0, 0,0, 0,0}, {0,0,0,0,0,0,0,0,0,0, 0, 0},

{0, 0,0,0,0,0,0,0,o0,o0,0}, {O0,0, 00,0, 0, 0,0, 0,0}, {O,0,0,0,0;0,0,0,0},
{0, 0,0,0,0,0,0,0}, {O,0 0,0,0,0, 0}, {O,0 0,0,0,0}, {O,0,0,0,0},

{o, 0, 0, 0}, {0, O, 0}, {0, O}, {0}}

Clear[fxn]};
T13 = {T, 13};
cdfs = {Fmr, VQ, BW, TresAng, Wshower,
Whouse, ETshower, ETbath, EThouse, AEshower, AEbath, AEhouse, T13, T13};
fin(f ,vq , bw_, t_, wsh_, wh_, etsh _, etba_, eth_, aesh_, aeba_, aeh_, t13gh_, t13h_ ] :=

12.9 74-1 EFcon 1
£x *bw T wvgl| € ConcAng ——
1000 ATcon 24
etsh etba .54\ eth
wsh (.76 + .029 t13sh) + +wh [ (.76 + .029 t13h) —
aesh aeba . aeh

fxn[FmrBar, 1, 71, TresAngBar, 480, 42, .129, .33, 14, AEshHBar, AEbaHBar, AEhHBar, 0, 0]

2.30022x10°¢

Timing[{jen, cdf, cvm} = QUAnalyze[cdfs, £xn, 2000, 10, Correlate -» corr, Scale - 1000];]

{277.6 Second, Null}

TBL/@jen

{Mean Ar] Max{iAré% JennrichChi2 DegFr P-adj »
-0.000310836 0.03218 10.4729 91 1. ‘
Fractile Value CVM(%)

0.01 4.8772x10°°  2.95986

0.05 0.0000238177 1.50669

0.5 0.000489184 0.794377

0.95 0.010794 1.05828

0.99 0.0233732 2.245

Mean 0.00225019 0.501055

Variance 0.0000244482 5.8905
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D8

PlotCdf[{cvm, cdf}, Ymin > -.01, Xmin » ~.0001, Xmax > .0125];

1 . — —
0.8
0.6
0.4

0.2

0 - .
0 0.0020.0040.0060.008 0.01 0.012

Put [cdf, PathName [EinhaleAng]];

end

end

m Dermal Exposure

m EdermalBar = Uncertainty in Population-Average Level

{TresBar,Conc} = uncertain variates

ETshower

{LN, {-2.12323, 0.388026}}

cdfs = {TresBar, Conc};

EFcon .76
£xn -+ FmrBar « SABWBar+ .65+ .263 % .129« ¢t c(l-

ATcon

fxn - 0.0000410946c t

Clear({fxn];
fxn[t_, c_] :=0.0000410945965500063259  c t

fxn[t, ¢] /. {c 2 ConcAng, t » TresBarAng}
6.95883 x107°

Timing[{jen, ¢df, cvmn} = QUAnalyze[cdfs, £xn, 2000, 10, Scale -» 1000];]

{33.3833 Second, Null}
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D9

TBL/@jen

{Mean Ar Max:uArQ; JennrichChi2 DegFr P-adj
-0.00280571 0.01444 0.41717 1 0.929433
Fractile Value CVM (%)

0.01 0.00213724 1.34291

0.05 0.00318948 0.37956

0.5 0.005998 0.123699

0.95 0.0123634 0.459695

0.99 0.0187893 1.62332

Mean 0.0071258 0.269769

Variance 0.000136076 8.27214

PlotCdf[{cvm, c¢df}, Ymin » -.01, Xmin-» ~-.0001, Xmax -» .015];

1 . . S
0.8
0.6
0.4
0.2

0 .
0 0.002.004.00©.0080.010.01D.014

Put [cdf, PathName [EdermalBar}]:;

end

u <Edermal> = Variability in Expected Level

{SABW Fs,Kp,ETshower,TresAng,T13,Fmr} = heterogeneous variates

CAdfQ /e {SABW, TresAng}

{True, True}

{Conecang, Fs, Kp, ETshower, T13}

{0.0223, Fs, Kp, {LN, {-2.12323, 0.388026}}, {T, 13}}

T13 = {T, 13};

Fe = {U, {.4, .9}};
Kp = {N, {.263, .018}};
cdfs = {Fmr, SABW, Fs, Kp, ETshower, TresAng, T1l3};
Clear[€fxn];

fxn(f_, sabw_, fs_, kp_, etsh_, t_, t13_] :=

on

EFc
fxsabwxfsxkpretshxt

ConcAng (1 -
Tcon

.76 + . 029 t13 3
——z——) o

fxn [FmrBar, SABWBar, .65, .263, .129, TresAngBar, 0]

6.92183x107°
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D10

end

end

Timing[{jen, cdf, cvm} = QUAnalyze[cdfs, £xn, 2000, 10, Scale » 10001 ;]

{131.933 Second, Null}

TBL/@jen
Mean [Ar] [|ar
-0.000538521 1835
Fractile Value
0.01 0.0000165555
0.05 0.0000796803
0.5 0.00159787
0.95 0.0331107
0.99 0.0669827
Mean 0.00684773
Variance 0.000191493

]
93

JennrichChi2 DegFr P- adj
2.62117 21 1.

CVM(%)

3
1
0
1.
1
0
1

.56479
.07369
.732505
28518 }
.42869
.342052
.74394

PlotCdf [{cvm, cdf}, Ymin » -.01, Xmin - -.0001, Xmax - .03];

1

0.8
0.6
0.4
0.2

0
0 0.005 0.01 0.015 0.02 0.025 0.03

Put [cdf, PathName {EdermalAng]];
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Appendix 2.E:

Effective Cytotoxic Dose

<< RiskQ':

HardDrive = "Bogen"™;

PathName [filename_, hardDrive_String: HardDrive] := Module[{file = filename},
If [Head[file] =!= String, file = ToString[file]];
StringJdoin[hardDrive, ":Ken:TCE Air Force:Data:", file]

1:

Inputs

m Log-Transform Utility Functions

GMGSDx: :usage = "GMGSDx[Mx, SDx] returns the geometric mean and geometric sdandard
deviation of a lognormal variate X that also has the specified arithmetic mean Mx
and arithmetic sdandard deviation SDx, based on the method of moments.";

MSDx: :usage = "MSDx[GMx,GSDx] returns the arithmetic mean and arithmetic sdandard
deviation of a lognormal variate X that also has the specified geometric mean GMx
and geometric sdandard deviation GSDx, based on the method of moments.";

GMGSDx1::usage = "GMGSDx1[cvWant,cv2] returns the GM and GSD of a lognormal variate
X1, such that the product X1+X2 has the degired coefficient of variation (CV) =
cvWant, conditional on the lognormal variate X2 having an arithmetic
mean and CV equal to 1 and cv2, respectively, based on the method of moments.";

MSDx [GMx_, GSDx_] := Module[{mux, sigy},
sigy = Log [GSDx] ;
mux = GMx E+ ((8igy+2) /2);
mux {1, Sqrt[E4 (sigy*2) - 1]}]

GMGSDx [Mx_, SDx_] := Module[ {muy, sigy}.,
s8igy = Sqrt [Log[1l + (SDx/Mx) 42]];
muy = Log [Mx] - (sigy42) /2;
EA {muy, sigy}]

GMGSDx1 [cvWant_, c¢v2_] := Module [ {myl},

1]s

ov2® +1
muyl = Log [Sqrt [————
cvWant? + 1

EA (muyl, Sgrt{-2mauyl]}

] /: cvWant >= cv2

El



E. Effective Cytotoxic Dose

E2

m Input Empirical (Derived) Distributions

end

Conc = ToExpression[

ReadList [PathName [ "concentration.txt", HardDrive], Word, Recordlists -> True]];
ConcAng = 0.0223; (» mg/L *)

Ingest = {LN, {Log[.0198], Log{1.88]}}:
IngestBar = 0.0242; (*x L/kg-d &)

SABW = ToExpression |
ReadList [PathName [ "sabwratioALL.txt", HardDrive], Word, RecordLists -> True]l]:;
SABWBar = 325.881; (* cm2/kg «*)
Fa= (U, {.4, .9}};
Kp = {N, {.263, .018}}:

InhaleBar = 12.9* (714.74); (* L/h )

VQ = {LN, Log[{.959938, 1.33104}]};

T13 = {F, 13};

AEshower = (U, {4, 20}};

AEshHBar = 1 /EV[{1./#[[1]], #[[2]])&/@RQ[CAE, U, {4, 20}, 2000]]:
{gmgsd = GMGSDxee@#& /eN[{ {480, 160}, {.129, .052}}],

{Wshower, ETshower} = ({LN, #}&/@Log[gmgsd])}

{{{455.368, 1.38347}, {0.119645, 1.47407}),
({LN, {6.12111, 0.324593}}, {LN, {-2.12323, 0.388026}}}}

m Feq (function)

1- E—kt

lim = Limit [ :(—1:;;‘7

,t->o]

k
ToEow

{limk = 1lim /. k -> .000000000001, 1/ 1limk}

{0.0416666, 24.)

1 - E—kt

fx[k__, t_] = m
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Plot [{£x[k, .01], £x[k, .25], £x[k, .5], 247 + .57k}, (k, 0.0001, .1},
AxesOrigin -> {0.0001, 0.04}, PlotRange -> {{0.0001, .1}, {0.04, .12}}];
0.12
0.11
0.1
0.09
0.08
0.07
0.06
0.05

002 004 006 008 0.1

kval = Join[{.001}, Range[.005, .1, .0025]];

out = {fx[k, .01}, £x[k, .25], £x[k, .5]} /. k> kval;
xy = Flatten[Transpose[{kval, #}]&/@ (out -244-1), 1];
fit = Fit[xy, {x, %42}, x] (* k = 0 - .1 %)

0.505316x+1.66078 x>

£it[[2]1]1 7/ £it[[1]]

3.28661x

zz =RQ[Q, N, {0, 1}, (.95, .99, .995}];

cv=0.60; (* = agssumed CV for Vke; see below %)

gsd = EASqgrt[Logf{l +cv42]]: (* by method of moments x)
{ke=0.028%714-.3, gsd, kexgsd*zz}

{0.00779436, 1.74109, {0.0194043, 0.028315, 0.032516}}
data = ({0, 244~1} +#)&/@Prepend{xy, {0, 0}]:
PlotData[data, FitTo » {{244~-1 + £it, 244~-1 +0.5053 x}, x},

Xmin - -.0001, Xmax - .1, Ymin - .0399, Ymax - .12, Style -+ 00, Dashed -+ {False, .025},
DotsSize +» .0125];

0.12 . .

0.1
0.08 -

0.06 _ a2

0.04

0 0.02 0.04 0.06 0.08 0.1
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(* ~% relative exror of linear approximation )
Plot [100 ((244-1+ £it) / (244-1+0.5053x) ~1), {x, 0, .06}, :
AxesOrigin -+ {-.0001, -.0001}, PlotRange » {{-.0001, .06}, {-.0001, 10}},
Frame - True, GridLines - {

Range([.01, .05, .01], Range([2, 8, 2]}]:

10
8
6 /
4 //
2 7/
0

0 0.01 0.02 0.08 0.04 0.05 0.06

end

m Body Weight (adult male + female), Vmax = Ve, and VQ

CV  =coefficient of variation

Qa = alveolar ventilation rate = 12.9*BW~.74 (Allen & Fisher, 1993)

VVmax= Variability (unitless) in Vmax, where Vmax = 14.9*BWA.74 (in mg/h) (Allen & Fisher, 1993)
Vinhale= Variability (unitless) in Inhalation rate, where latter in L/h

VKe = Variability (unitless) in Ke, where Ke = 0.028*BWA-.3 (in 1/h) (Allen & Fisher, 1993)

From Finley et al. 1994 (CalEPA 1996, p. 10-7), the BW distribution for adult males & females is ~LN and CV[BW] =
~0.22:

Clear{gsd};

{ev, s8d} = {71., 15.9};

(cv=8d/ev, cvWant = 0.6, {BWgm, BWgsd} = GMGSDx[ev, 8d],
Log [ {BWgm, BWgsd}]}

{0.223944, 0.6, {69.2839, 1.24759}, {4.23821, 0.22121}}

CVwant = 0.60 for Vmax/BW assumed, based on Lipscombe et al. 1998 (Table 5). From Allen and Fisher (1993), the
maximum metabolic rate in mg/h is modeled as Vmax ~ 14.9¥BWA0.7. Now let VVmax be LN-distributed with an
arithmetic mean of 1, where Vmet represents variation in Vmax not attributable to that in BW. Thus, Vmax ~
14.9*Vmet*BWA.7, whence Vmax/BW ~ 14.9*Vmet*BWA-0.3. It follows from the method of moments that CV{BWA-.3] =
CV{BW~.3] = 0.06644, whence CV[Vmet] = 0.5950, GM[Vmet] = 0.8594, GSD[Vmet] = 1.734, Log{{GM[Vmet],
GSD[Vmet]}]1 = {-0.15154,0.550528}. CVwant =0.60 for VKe is also assumed, based on Fisher et al. 1998 (Table 8); thus
VKe = VVmax = Vmet.

{{01, 02} = MSDx[a BWgm* -.3, BWgsd+*-.3], cvCorr = 02 / ol}

{{0.281039a, 0.0186711a}, 0.066436)
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{{o1, 02} = MSDx[a BWgm* -.3, BWgsd*.3], cvCorr =02 /o0l}

{{0.281039a, 0.0186711a}, 0.066436}

{o = GMGSDx1 [cvWant, cvCorr], {muyVmet, sdyVmet} = Log[o]}

{{0.859383, 1.73417}, {-0.15154, 0.550528}}

MSDx@e@o

{1., 0.594999}

(* By definition, the CV of (BWA.3 % Vmet) = )
Sqrt[E+ (sdyVmet 42 + Log[BWgsd+ .3]42) - 1]

0.6

{BW = {LN, Log[{BWgm, BWgsd}]}, Vmet = {LN, {muyVmet, sdyVmet}}}

{{LN, {4.23821, 0.22121}}, {LN, {-0.15154, 0.550528}}}
From CalEPA/OHEA (1996, Stochastic Analysis, p. 3-31 - 3-32; cit. above), cvA = CV[24*Q/BW] = CV[Qtot/BW] = ~
0.3, where Q denotes total ventilation rate in L/h. From Allen and Fisher (1993), alveolar ventilation rate in L/h is modeled
as Q ~ 12.9*BW0.7, and Qtot ~ kQ for some constant k. Now let VQ be LN-distributed with an arithmetic mean of 1,
where VQ represents variation in Q not attributable to that in BW. Thus, Q ~ 12.9*VQa*BWA.7, whence Q/BW ~

12.9¥VQ*BW~-0.3. It follows from the method of moments that CV[BWA-.3] = CV[BW~.3] = 0.06644, whence CV[VQ] =
0.2919, GM[VQ] = 0.9599, GSD{VQ] = 1.331, Log[{ GM[VQ], GSD[VQ]}] = {-0.0408868, 0.285961}.

{{ol, 02} = MSDx[a BWgm*-.3, BWgsd4*~.3], cvBW3 =02 /01}

{{0.281039a, 0.0186711a}, 0.066436}

{0 = GMGSDx1[0.3, cvBW3], {muyX, sdyX} = Log[c]}

{{0.959938, 1.33104}, {-0.0408868, 0.285961}}

{{mX, 8dX} = MSDx€@@o, cvX = 8dX /mX}
{{1., 0.291908}, 0.291908}
(* By definition, the CV of (BWA.3 % X) = %)

{Sqxt[E* (8dyX* 2 + Log[BWgsd+ .3] 42) - 1],
((L+cvBW342) (L+cvXAa2) -1)4+.5}

{0.3, 0.3}
{BW, Vmet, VQ} =

{{LN, {4.23821,0.22121}},
{LN, {-0.15154,0.550528}}, {LN, {(-0.0408868,0.285961}}};
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m Fractions metabolized

= Oral (fmo)

Heterogeneous variates ={Pb,Vmet,VQ}

{nsam, nsim} = {2000, 10};

Pb = NormalCd£[10.2, 1.6, 405]:
cdfs = {Pb, VQ, Vmet};
Clear[fxn];

fxn[pb_, vq_, vmet_] := (1 +vq (vmet (.77 pb+2.547)) )"

£xn[10.2, 1, 1]

0.912288

sim = Table[SimulateCdf [cdfs, 500, TestCdf » False, Report -» Append], {10}];

{gims, rval, jens)} = Transpose{sim];
Jjen = Last [Sort [Last /@jens]] (% Max[chi2],df,pval %)

{0.398663, 3, 0.940519}
corr = First[Correlation[{#[[3]], fxnee#& /@Transpose[#]},

Type - Spearman, Report - False]]&/@sims;
Stats[corr, Report]

SD VM 95%LCL 95%UCL Min Max
0 859935 0.00411002 0 1511 0.856994 0.862875 0.854597 0.868392 10

Correlation between Vmet and Fmo = 0.86

corr = First[Correlation[{#[[2]], fxne@#& /@Transpose(i#]},
Type - Spearman, Report - False]]& /@sins;
Stats[corr, Report]

Mean SD CVM$ 95%LCL 95%UCL Min Max n
-0.43378 0.0133479 0.9731 -0.443329 -0.424232 -0.45298 -0.417722 10

Correlation between VQ and Fmo = -0.43

#[[2 1.299
corr = First [COrrelation[{ (1 + [(2]] (

+
#[[11] \#[[3]]

Type - Spearman, Report —» False] ] &/@sims;
Stats[corr, Report]

Mean CVM$% 95%LCL 95%UCL Min Max n
0.825436 0 00851143 0.3261 0.819347 0.831524 0.81263 0.837117 10

Correlation between Fmr and Fmo = 0.83

Timing[{jen, cdf, cvm} = QUAnalyze[cdfs, fxn, nsam, nsim, Scale » 1];]

{1094.55 Second, Null}

-1
3. 307)) , fxnee#s /@Transpose [#]},
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TBL/@jen

{MeaniAr] Max{éArl] JennrichChi2 DegFr Pval
0.00256474 0.0100917 0.390451 3 0.942208
Fractile Value CVM(%)

0.01 0.680326 0.395848

0.05 0.765428 0.103074

0.5 0.90237 0.0203722

0.95 0.963376 0.0237576

0.99 0.975746 0.0236983

Mean 0.888543 0.00239931

Variance 0.00395071 0.863083

{First[cd£f], Last[cdf]}

{{0.476647, 0}, {0.99139, 1}}

PlotCdf[{cwm, cdf}, Ymin-» -.01, Xmin » .495, Xmax > 1];

1
0.8
0.6
04

0.2

05 06 07 08 09 1

Fmo = StandardizeCd£[cdf, 405];

end

u Inhalation and dermal (fmr)

Heterogeneous variates ={Pb,Vmet,VQ}

{nsam, nsim} = {2000, 10};
cdfs = {Pb, VQ, Vmet};
Clear[£fxn];

vgq {1.299 -1
fxn[pb_, vq_, vmet_] := (1+ — ( +3.307
pb vmet

fxn[10.2, 1, 1]
0.68891
corr = Firgt[Correlation[{#[[2]], fxnee#& /@Transpose[#]},

Type - Spearman, Report -» Falsge]]&/@sims;
Stats[corr, Report]

Mean SD CVM% 95%LCL 95%UCL Min Max
~-0.753049 0.00720099 0.3024 -0.758201 -0.747898 -0.764949 -0.741702
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Correlation between VQ and Fmr = -0.75 g
corr = First[Correlation[{#[[3]], £fxneée@#& /@Transpose [#]},
Type - Spearman, Report -» False]]&/@sins;
Stats[corr, Report]
Mean SD CVM% 95%LCL  95%UCL Min Max n
0.453276 0.00968226 0.6755 0.44635 0.460202 0.436792 0.466869 10
Correlation between Vmet and Fmr = 0.45
Timing[{jen, cdf, cvm} = QUAnalyze [cdfs, £xn, nsam, nsim, Scale - 1];]
{1096.72 Second, Null}
TBL/@jen
Fractile Value CVM(%)
0.01 0.454963 0.559908
0.05 0.527838 0.151762
Mean{Ar] Max[{Ar|] JennrichChi2 DegFr Pval 0.5 0.680315 0.0680913}
0.001593 0.0140407 0.499243 3 0.919058* 0.95 0.794697 0.0632056
0.99 0.830531 0.090292
Mean 0.673284 0.0011681
Variance 0.00656651 0.240044
{First[cdf], Last[cdf]}
({0;2651,;383, 0}, {0.890069, 1}}
PlotCdf[{cvm, cdf}, ¥Ymin-» -.01, Xmin - -.0001, Xmax - 1];
1
0.8
0.6
0.4
0.2
0
0 0.2 04 06 0.8 1
Fmr = StandardizeCdf [cdf, 405];
end

Put [Fmo, PathName ["Fmo"]]:
Put {Fmr, PathName["Fmr"]];

Correlation between Vmet and Fmo = 0.86
Correlation between VQ and Fmr = -0.75
Correlation between Vmet and Fmr = 0.45
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Fmo = Get [PathName [Fmo]]; Fmr = Get [vPathName [Fmr]]:
CcdfQ /e {Fmo, Fmr} o

{True, True}

{FmoBar, FmrBar} = {0.888543, 0.6732836);

PlotCdf [ {Fmxr, Fmo}, Ymin -+ -.001, Xmin » .398, Xmax - 1];

1
0.8
0.6
0.4

0.2

0
04 05 06 07 08 09 1

end

end

Note: All distributions below are unscaled

m Ingestion Effective Dose (mg TCA/L plasma)

m <ECingest> = Variability in Expected Level

{VolDist, BW,VKe,Fmo,Ingest} = heterogeneous variates
Correlation between VolDist and BW is assumed to be -.5
Correlation between Vmet =Ve and Fmo is assumed to be 0

{nsam, nsim} = {2000, 10};

Ingest = {LN, {Log[.0198], Log[1.88]}};:
VolDist = {U, {.052, .152}}; (* L/kg )
cdfs = {VolDist, BW, Vmet, Fmo, Ingest};

corr = {{-.5, 0, 0, 0}, {0, O, 0O}, {O, O}, {0}};
Clear(fxn]};

fxnfu_, bw_, vmet_, fmo_, ing ] := ing+ ConcAng * fmo »

.4104 (1.488 bw?
+.5053
u vmet

fxn{.1, 70, 1, .7, IngestBar]

0.00903536

ES
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E10
Timing[{jen, cdf, cvm} = QUAnalyze[cdfs, fxn, ngam, nsim, Scale -» 1, Correlate - corr] ;]
{85.7333 Second, Null}
TBL /@jen
Fractile vValue CVM(%)
0.01 0.00149497 1.41686
0.05 0.00265397 0.846307
Mean [Ar] Max{|Ar|] JennrichChi2 DegFr P-adj 0.5 0.0110646 0.571085
-0.000233837 0.0171728 1.5172 10 1. * 0.95 0.0476501 0.587508
0.99 0.0879985 2.44676
Mean 0.0163479 0.171948
Variance 0.000306492 3.01902

PlotCdf [{cvm, cdf}, ¥min » -.01, Xmin - -.0001, Xmax - .07];

1
0.8
0.6
0.4
0.2

0 :
0 0.010.02 0.03 0.04 0.05 0.06 0.07

s8df = StandardizeCdf [cdf, 404]; EV[sdf, Empirical -> True]

0.0161848

Put [sdf, PathName [ECingestAng]]:
ECingestAng = Get [PathName [ECingestaAng]]:

ECingestAngBar=0.0161848;

end

m ECingestBar = Uncertainty in Population-Average Level

{Conc} = uncertain variate

ECingestAngBar

caf = { #[[111, #[[2]]}&/eConc;

ConcAng
Put[cdf, PathName [ECingestBar]];

ECingestBar = Get [PathName [ECingestBar]];

end

end
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m Inhalation Effective Dose (mg TCA/L plasma)

m <ECinhale> = Variability in Expected Level

{VolDist,BW,VKe,Fmr,Inhale,Wshower,ETshower,AEshower,T13} = heterogeneous variates
Correlation between Vmet = Ve and Fmr is assumed to be 0

Correlation between VolDist and BW is assumed to be -.5

Correlation between VQ and Fmr = -0.75

{InhaleBar, ConcaAng}

{302.358, 0.0223}

{nsam, nsim} = {2000, 10};
Clear[£fxn];
cdfs = {VolDist, BW, Vmet, VQ, Fmr, Wshower, ETshower, AEshower, T13};
corr= {{-.5, 0, 0, O, O, O, O, O}, {0, 0, 0O, 0, 0, O, O},
{0, 0, 0, 0, 0, 0}, {-.75, 0, 0, 0, 0}, {0, O, O, O}, {0, O, O}, {0, O}, {0}};
. .4104 [19.195 6.5145)

+

finfu_, bw_, vmet_, vq_, fmr_, wsh_, etsh_, aesh , t13_] := (
vmet buw?

u
wsh (.76 + .029 t13)

1000 aesh

] vq * ConcAng ( ) fmr « etsh

fxnf{.1, 70, 1, 1, .7, 480, .129, AEshHBar, 0]

0.00637328

Timing{{jen, cdf, cvm} = QUAnalyze [cdfs, fxn, nsam, nsim, Scale » 1, Correlate -» corr];]

{179.167 Second, Null})

TBL/@jen

{Mean 5 Ar | Jennr1chCh12 DegFr P- adj

0248172 0 020759 .33342 36 1.

Fractile Value CVM(%)

0.01 0.000715826 1.62597

0.05 0.00126666 0.60722

0.5 0.00538319 0.46861

0.95 0.0259794 1.09888

0.99 0.0489231 1.70975

Mean 0.00844442 0.179915

Variance 0.0000944227 3.53902
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PlotCdf[{cvm, cdf}, ¥min + -.01, Xmin - -.0001, Xmax - .05];

1 ———

0.8
0.6
0.4
0.2

0
0 0.0t 0.02 0.03 0.04 0.05

sdf = StandardizeCdf [cdf, 404]; EV[sdf, Empirical - True]

0.00835208

Put [sdf, PathName [ECinhaleAng]]:
ECinhaleAng = Get [PathName [ECinhaleAng]];

ECinhaleAngBaxr = 0.00835207927948548345";

end

s ECinhaleBar = Uncertainty in Population-Average Level

{Conc} = uncertain variate

ECinhaleAngBar

cdf = { #[[111, #[[2]]}&/eConc;

ConcAng
" Put [cdf, PathName [ECinhaleBar]];:

ECinhaleBar = Get [PathName [ECingestBar]];

end

end

m Dermal Effective Dose (mg TCA/L plasma)

u <Edermal> = Variability in Expected Level

{ VolDist, BW,Vmet,Fir,SABW,Fs,Kp,ETshower,T13} = heterogeneous variates
Correlation between Vmet = Ve and Fmr is assumed to be 0
Correlation between VolDist and BW is assumed to be -.5
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{nsam, nsim} = {2000, 10}; ‘
corr= {{-.5, 0, 0, O, O, O, O, O}, {0, O, O, O, O, O, O},
{0, o, 0, 0, 0, 0}, {0, 0, 0, O, O}, {0, O, O, O}, {0, O, 0}, {0, O}, {0}};
cdfs = {VolDist, BW, Vmet, Fmr, SABW, Fs, Kp, ETshower, T13};
Clear[fxn];
fxnl[u_, bw_, vmet_, fmr , sabw_, £fs_, kp_, etsh_, t13_] :=

.76 + .029 13 3
—————) 1077 % £fmr *

sabw + £8 « kp + et gh + ConcAng (1 - 2

.4104 (1.488 bw3
+.5053
u vmet

£xn[.1, 70, 1, .7, SABWBar, .65, .263, .129, 0]

0.00166356

(cAf£Q[#] | | RQ[Test, #[[1]], #[[2]]])&/e@cdfs

{True, True, True, True, True, True, True, True, True}

Tining[{jen, cdf, cvm} = QUAnalyze[cdfs, £xn, nsam, nsim, Scale -+ 1, Correlate -» corr];]

{173.433 Second, Null}

TBL/@jen
Fractile Value CVM (%)
0.01 0.000268902 0.97206
0.05 0.000445612 0.780994
{Mean Ar% Max[|Ar|] JennrichChi2 DegFr P-adj 0.5 0.00163022  0.369624
0.000459795 0.0212962 4.44316 36 1. + 0.95 0.00625184 1.02696
0.99 0.0111429 0.914124
Mean 0.00228462 0.1228
Variance 5.0004x107% 2.93471

PlotCdf[{cvm, cdf}, Ymin-» -,.01, Xmin -~ -,00001, Xmax - .01];

1
0.8
0.6
0.4
0.2

0O 0.002 0.004 0.006 0.008 0.01
sdf = StandardizeCdf [cdf, 404]; EV[sdf, Empirical - True]
0.00226194

Put [sdf, PathName [ECdermalAng]];

ECdermalAng = Get [PathName [ECdermalAng] ] ;

ECdermalAngBar = 0.00226194038376105455" ;
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end

m EdermalBar = Uncertainty in Population-Average Level

{Conc} = uncertain variates

ECdermalAngBar
ConcAng

cdf:{ #0111, #[[2]]}&/@00nc;

Put {cdf, PathName [ECdermalBar]];

ECdermalBar = Get [PathName [ECdermalBar]];

end

end
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T
it

Abpendix 2.F

Effective Dose Correlations

<< RiskQ’;

HardDrive = "Bogen";

PathName[filename_, hardDrive_String: HardDrive] := Module[{file = filenamej ’
If {Head[file] =1= String, file = ToString[file]l];
StringJoinfhardDrive, ":Ken:TCE Air Force:Data:", file]

1:

Inputs

m Log-Transform Utility Functions

GMGSDx: :usage = "GMGSDx[Mx,SDx] returns the geometric mean and geometric sdandard
deviation of a lognormal variate X that also has the specified arithmetic mean Mx
and arithmetic sdandard deviation SDx, based on the method of moments.";

MSDx: :usage = "MSDx[GMx,GSDx] returns the arithmetic mean and arithmetic sdandard
deviation of a lognormal variate X that also has the specified geometric mean GMx
and geometric sdandard deviation GSDx, based on the method of moments.";

GMGSDx1: :usage = “GMGSDx1 [cvWant,cv2] returns the GM and GSD of a lognormal variate
X1, such that the product X1xX2 has the desired coefficient of variation (CV) =
cvWant, conditional on the lognormal variate X2 having an arithmetic
mean and CV equal to 1 and cv2, respectively, based on the method of moments.";

MSDx [GMx_, GSDx_] := Module[{mux, sigy},
sigy = Log{GSDx] ;
mux = GMx E A ((8igy*2) /2);
mux {1, Sqrt[E4 (sigy+2) -1]}]

GMGSDx [Mx_, SDx_] := Module[ {muy, sigyv},
8igy = Sqrt [Log[l + (SDx/Mx) 42]];
muy = Log [Mx] - (sigy42) /2;
E4 (muy, sigy}]

GMGSDx1 [cvWant_, cv2_] := Module [ {myl},

s

cv2? ¢ 1
muyl = Log[Sqrt [——————
cvWant? + 1
E* {muyl, Sgqrt{-2muyl]}

] /: cvWant >= cv2
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m Input Empirical (Derived) Distributions

Clear[Tbarang, TresBar, TresAng];
Tharang = Rest [Get [PathName [Tbarang]]]:
TresBar = #[{{1, 2}]] & /@Tbarang;
TresAng = #[[ {1, 3}]]&/@Tbarang;
TresBarAng = 7.59358; (x y «)
TresAngBar = 7.55321; (* y *)
EFcon = 350; (% d/y «)
ATcon = 25550; (% d *)
Conc = ToExpression[
ReadList [PathName ["concentration.txt", HardDrive], Word, RecordlLists -> True]l];
ConcAng = 0.0223; (* mg/L *) *

Ingest = {LN, {Log[.0198], Log[1.88]}};
IngestBar = 0.0242; (% L/kg-d «)
ECingestAngBar = 0.0161848;

SABW = ToExpression[
ReadList [PathName ["sabwratioALL.txt", HardDrive], Word, RecordLists ~> True]];
SABWBar = 325.881; (x cm2/kg *)
Fs = {U, (.4, .9}};
Kp = {N, {.263, .018}};
ECdermalAngBar = 0.002261940;

Inhale = ToExpression[ReadlList [PathName ["inhaleALL.txt"], Word, RecordLists -> True]]:;
(x*Note: Inhale in L/kg-d %)
InhaleBarC = 12.9 4+ (714.74); (% L/h *)
InhaleBarG = 0.102; (x m3/kg-d «)
ECinhaleAngBar = 0.0083520793;
{BW, Vmet, VQ} =
{{LN, {4.23821, 0.22121}},
{LN, {-0.15154, 0.550528}}, {LN, {-0.0408868, 0.285961}}};
VolDist = {U, {.052, .152}}; (* L/kg *)
T13 = {T, 13};

{AEshHBar, AEbaHBar, AEhHBar} = 1/ (EV/@{
(1. /7#[[1]1], #[[2]]})&/eRQ[CdE, U, {4, 20}, 2000},
{1./7#%[[1]1], #[[2]])}&/erQ[Ccdf, U, {10, 100}, 2000],
{1./#[[1]], #[[2]])}&/eRQ[CdEf, U, {300, 1200}, 2000]});
gmgsd = GMGSDxee#& /eN[{ {480, 160}, {42, 15}, {.129, .052}, {.33, .22}}]:
{Wshower, Whouse, ETshower, ETbath} = ({LN, #}&/@Log[gmgsd]);
{AEshower, AEbath, AEhouse, EThouse} =
({U, #}&«/@({4, 20}, {10, 100}, {300, 1200}, {8, 20}}):

end
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m Fractions metabolized (sulﬁmary—see Effective Cytotoxic Dose.nb)

Correlation between VolDist and BW = -0.50 (assumed approximation)
Correlation between Ve and Fmo =0, and between Ve and Finr =0
Correlation between VQ and Fmo =-0.43

Correlation between VQ and Fmr = -0.75

Correlation between Fmr and Fmo = 0.83

NLULICIAUVIL ULLVY VL 4 iia Quaks Dk

{FmoBar, FmrBar} = {0.888543, 0.6732836};
Clear[Fmo, Fmr];

Fmo = Get [PathName [Fmo] ] ; Fmr = Get [PathName [Fmx'] ] ;
cdfQ /e {Fmo, Fmr}

{True, True}
end

end

m Effective Dose Uncertainty

cdfGingBar = {TresBar, Conc};

EFcon

fxnGingBar(t_, c_] := IngestBarxt c * FmoBar;

ATcon
cdfCingBar = {Conc};

. ECingestAngBar
fxnCingBarfc_] :=c :
ConcAng

cdfGinhBar = {TresBar, Conc};

12.9
fxnGinhBar[t_, c¢_] := FmrBaxr (
1000

EFcon 1 .129 .33 .54 14
c—(»zso (.76) ( + )+42 [.76— —_—
ATcon 24 AEshHBar  AEbaHBar AEhHBar
cdfCinhBar = {Conc}:
ECinhaleAngBar
fxnCinhBar|c_] :=c¢ :
ConchAng

cdfGderBar = {TresBar, Conc};

* 7174 & 1) *t

EFcon .76 2
fxnGderBar[t_, c_] := FmrBar « SABWBar « .65 .263 % .129* t c|l- ——) 107°;
ATcon 2

cdfCderBar = {Conc};

ECdermalAngBar
fxnCderBar[c_] 3= ¢ H
ConcAng

All 6 functions above are linear functions of either ¢ or c*t; thus: all those involving just ¢ are 100% correlated, all those
involving just c*t are 100% correlated, and correlations between those involving ¢ vs. c*t are given by:
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end

cdfs = {TresBar, Conc};

gim = Table[SimulateCdf [cdfs, 500, TestCdf - False, Report » Append], {10}1];

{sims, rval, jens} = Transpose[sim];
jen = Last [Sort [Last /@jens]] (*x Max[chi2],df,pval *)

{0.339124, 1, 0.560336}
corr = First[Correlation[{#[[2]], #[[1]] »#[[2]]},

Type -+ Spearman, Report -+ False]]&/@sims;
Stats[corr, Report]

CVM% 95%LCL 95%UCL Min

Mean SD Max n
0.487765 0.0103941 0.6739 0.480329 0.4952 0.470525 0.506052 10
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m Effective Dose Variability

cdfGingAng = {Ingest, TresAng, Fmo};
. . ] EFcon

fxnGingAng[ing , t_, £_] := ingxt

ATcon

ConcAng * £;

cdfCingAng = {VolDist, BW, Vmet, Fmo, Ingest};
corCingAng = {{~-.5, 0, 0, 0}, {0, O, O}, {0, O}, {0}}:

fxnCingAng[u_, bw_, vimet_, fmo_, ing ] := ing*ConcAng * fmo »

.4104 (1.488 bw'?
+.5053]1{:;
u vmet

cdfGinhAng = {Fmr, VQ, BW, TresiAng, Wshower,
Whouse, ETshower, ETbath, EThouse, AEshower, AEbath, AEhouse, T13, T13};
corr = Table[Table[0, {j}], {J, 13}];
corGinhAng = ReplacePart [Reverse [corr], -.75, {1, 1}]; fxmGinhang([f_, vq_,
bw_, t_, wsh_, wh_, etsh_, etba_, eth_, aesh_, aeba_, aeh_, t13sh_, t13h_] :=

12.9 741 EFcon 1
£« +*bw """ xvq| t = ConcAng —
1000 ATcon 24
. etsh etba .54\ eth
wsh (.76 + .029 t13sh) + +wh|{ (.76 +.029 t13h) —— ) :
aesh aeba .7 aeh

cdfCinhiAng = {VolDist, BW, Vmet, VQ, Fmr, Wshower, ETshowexr, AEshower, T13};
corCinhAng = {{-.5, 0, 0, 0, 0, 0, 0O, 0}, {0, 0, O, O, O, O, O},

{o, o, 0, 0, 0, 0}, {-.75, 0, 0, 0, 0}, {0, O, O, O}, {0, O, O}, {0, O}, {0}};
fxnCinhaAng|[

.4104 (19.195 6.514S5
u_, bw_, vmet_, vq , fmr_, wsh_, etsh_, aesh_, t13_] := ( ( )

+
u vmet b3
wsh (.76 + .029 £13)

1000 aesh

) vq +* ConcAng ( ) fmr « etsgh;

cdfGderAng = {Fmr, SABW, Fs, Kp, ETshower, TresAng, T13};
fxnGderAng(f_, sabw_, fs_, kp_, etsh_, t_, t13_] :=

.76 + .029 t13 3
___.._) 102;

EFcon
f x sabw £8 «kp * etsh * t ———— ConcAng (1- 2

ATcon

cdfCderAng = {Volbist, BW, Vmet, Fmr, SABW, Fs, Kp, ETshower, T13};
corCderAng = {{-.5, 0, 0, 0, O, O, O, 0}, {0, 0, 0, 0, O, O, O},

{o, o, 0, 0, 0, 0}, {0, 0, 0, O, 0}, {0, O, O, O}, {0, O, 0}, {0, O}, {0});
fxnCderAng[u_, bw_, vmet_, fmr_, sabw_, fs_, kp_, etsh_, t13_] :=

<76 + .029 t13
sabw * £8 « kp x et sh « ConcAng (1 - -—-——-)

.4104 (1.488 bw?
+ .5053] |;
u vmet

1072 & fmr * (

Function {argument positions}:
fxnGingAng[ing_,t_f
{7,8,5}
fxnCingAnglu_,bw_,vmet_,fmo_,ing_}]
{1,2,3,5,7}

F5
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fxnGinhAng(f _,vq_bw_,t_,wsh_,wh_,etsh_,etba_,eth_,acsh_,aeba_,ach_,t13sh_,t13h_]
{6,4,2,8,9,10,11,12,13,14,15,16,17,18}
fxnCinhAng[u_,bw_,vmet_,vq_,fmr_,wsh_,etsh_,aesh_,t13_]
{1,2,3,4,6,9,11,14,17}
fxnGderAng[f_,sabw_.fs_kp_,etsh_,t_,t13_]
{6,19,20,21,11,8,17}
fxnCderAngfu_,bw_,vmet_,fmr_,sabw_,fs_,kp_,etsh_,t13_}]
{1,2,3,6,19,20,21,11,17}

cdfs = {VolDist, BW, Vmet, VQ, Fmo, Fmr, Ingest, TresAng,
Wshower, Whouse, ETshower, ETbath, EThouse, AEshower,
AEbath, AEhouse, T13, T13, SABW, Fs, Kp}; (% n=21 %)

(CAfQ[#] | | RQ[Test, #[[1]], #[[2]]])&/@cdfs

{True, True, True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True}

Correlation between VolDist and BW = -0.50 (assumed approximation)
Correlation between Ve and Fmo =0, and between Ve and Fmr =0
Correlation between VQ and Fmo = -0.43

Correlation between VQ and Fmr =-0.75

Correlation between Fmr and Fmo = 0.83

corr = Reverse [Table[Table[0, {j}]., {(j, 20}]]:
(corr = ReplacePart[corr, #[[1]], #[[2]]])&/@{
{-.5, {1, 1}}, {-.43, {4, 1}}, {-.75, {4, 2}}, {-83, {5, 1}}}:

Clear[o];
XX = {a., b,c,d,e, £, g,

h,i,j,k, 1, m;n, 0, p,Qq x,8,t,u, v, w, x,¥, 2}; xx

{al bl cl dl e' fl g: hl il jl kl ll ml n, o, pl q, rl SI tl ul Vl wl xl yl Z}

Define fxns here each as a function of elements of the convenient dummy variate xx:

fxns = {

{£xnGingAng, {7, 8, 5}},

{fxnCingAng, {1, 2,3, 5, 7}}.,

{fxnGinhAng, {6, 4, 2, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}},
{fxmCinhAng, {1, 2, 3, 4, 6, 9, 11, 14, 17}},

{fxnGderAng, {6, 19, 20, 21, 11, 8, 17}},

{fxncderAng, {1, 2, 3, 6, 19, 20, 21, 11, 17}}};
MapThread[#le@xx[ [#2] ] &, Transpose[fxns]]

0.00915192 (0.5053 + 1:4882%7 ) o g

. a !
1.64195x107 dfh (i (E+ L) (0.76+0.029q) + &T1422in(0.76+0.0991)
H0-26 ’

9.15192x107° (&345 4 13195 ) 3£ 3 k (0.76 +0.029 q)
an !

3.05479x10”7 £hk (1;%— (-0.76-o.oz9q)) stu,

{0.000305479 egh,

9.15192x10™ (0.5053 + 1488522 ) £y (1 4+ 1 (-0.76-0.029q)) stu

a }
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Select a series of 50 simulated-variate sets that each have a 21-variate correlation matrix (=corr, defined above) that is not
significantly different than corr. Below, 20 of a total of 70 sets tried qualify for use using a p-value of <0.01 to reject:

Timing [

sim = Table[ (Prn(i]; SimulateCdf [cdfs, 500, Correlate -+ corr, Report -» Append]), {i, 70}];
{sims, rval, jens} = Transpose[s8im];
jen = Last [Sort[Last /@jens]] (% Max[chi2],df,pval )]

{3335. Second, {35.2754, 210, 1.}}

Dimensions[sims]

{70, 21, 500}

sel = Select[o = Last /@jens, Last[#] > 0.01&];
{pos = Position{o, #][[1, 1]]&/@sel, Length{posg]}

({1, 2.3,4,5,6,7,8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70},

70}

Union{Last /@Last /@jens]
{1.}
OKsims = simsg [ [Take[pos, 50]]]; nn = Length[0Kgims]

50

corm = Table [First [Correlation|
MapThread[#l@@OKsims[[i]] [ [#2]] &, Transpose[fxns]],
Type - Spearman, Report -» False]], {i, nn}]:

Mean corr, SDM[corr], and CVM][corr] values for:
GingAng CingAng GinhAng CinhAng GderAng CderAng

ev = Plus@@corm/nn; TBL([N[ev, 3]]

1. 0.233 0.878 -0.00269 0.894 0.000496
0.233 1. -0.0088 0.421 0.00439 0.514
0.878 -0.0088 1. 0.187 0.918 0.035
-0.00269 0.421 0.187 1. 0.0766  0.649
0.894 0.00439 0.918 0.0766 1. 0.177
0.000496 0.514 0.035 0.649 0.177 1.

sdm =V (Plusee (((#-ev)*2)&/@corm)) / (nmn (nn-1)) ; TBL[{N[sdm, 3]]

0 0.0022 0.000722 0.00207 0.000508 0.0018
0.0022 0 0.00207 0.00183 0.00223 0.00171
0.000722 0.00207 O 0.0022 0.000564 0.00192
0.00207 0.00183 0.0022 0 0.00205 0.00159
0.000508 0.00223 0.000564 0.00205 O 0.00214
0.0018 0.00171 0.00192 0.00159 0.00214 O
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cvm = Abg[100 sdm / ev] ; TBL[N[cvm, 3]]

0 0.946 0.0822 76.7 0.0568
0.946 0 23.5 0.435 50.8
0.0822 23.5 0 1.17 0.0614
76.7 0.435 1.17 0 2.68
0.0568 50.8 0.0614 2.68 0

364. 0.333 5.49 0.245 1.21

end

364.
0.333
5.49
0.245
1.21
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s

Abpendix 2.G

Potency

<< RigkQ";

<< Minimize";

Multistage (Genotoxicity) Model

m Multistage Potencies for TCE Cancer Bioassays

The Mathematica program "QFit" (by K.T. Bogen, LLNL —see "RiskQ Functions Used" section below) was used to obtain
for each bioassay data set a distribution reflecting parameter-estimation uncertainty pertaining to the value of
multistage-model "potency” (denoted q; ), that is, the value of the linear coefficient of dose D in the multistage model of
cancer risk, which posits that cancer risk is essentially an exponentiated-polynomial function dose. Conditional on any
sufficiently “upper-bound" (i.e., conservative) estimate (denoted g;* > 0) of the linear "potency" term (g1 ), the multistage
model guarantees that any small increase in cancer risk will be very nearly equal to the product: g;*x D. Uncertainty
distributions are derived corresponding to each of seven bioassay data sets considered below; one data set (data set #7 below
concerning the study by Henchler et al., 1980, showing malignant lymphoma in female HAN:NMRI mice) is excluded for
reasons noted below.

u 1. NCI 1976 Mouse B6C3F1: M 34g HCC

xhi=800;
doses = { 0, 370, 739}*1. (* mg/kg~d LTWAM *);
ndosed = {20, 48, 40)};

nrespond = { 1, 26, 31};

G1
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G2

QTCEl=QFit [doses, ndosed, nrespond, 500,
PolyDegree->2, Exponentiated->True,
ConfInterval->.90, Output->Q1,
Xmin->-xhi/100,Xmax->1.01*xhi, Ymin~>0, Ymax->11;

The Optimized Function F of Dose d is:

F(d) 1 - exp[-P(d)], where:

P(d)

0.0524116+0.00199086d+2.72013x1078 @2
ChiSquare(l)= 0.032011 1-tailed p= 0.858003
R%= 0.999488

F(d) vs Data

(& Bootstrap 90% Conf. Limits on Data)

0.8
0.6
0.4
0.2

0 200 400 600 800

m 2. NCI 1976 Mouse B6C3F1: F29g HCC

xhi=600;
doses = { 0, 275, 550}*1. (* mg/kg-d LTWAM *);
ndosgsed = (18, 42, 37};
nrespond = { 0, 4, 11};

G2
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G3

gTCE2=QFit [doses, ndosed, nrespond, 500,
PolyDegree->2, Exponentiated->True,
ConfiInterval->.90, Output->Ql,

Xmin->-xhi/100,Xmax~>1.01%*xhi, Ymin->0, Ymax->1];
The Optimized Function F of Dose d is:
F(d) = 1 - exp[-P(d)]., where:

P(d)

f

0.0000863863d+1.00929x107% &2
ChiSquare(l) = 0. Perfect fit.

R?= 1.

F(d) vs bata

(& Bootstrap 90% Conf. Limits on Data)

1

0.8
0.6
0.4
0.2

0 100 200 300 400 500 600

= 3. NTP 1983 Mouse B6C3F1: M 37g HCC or HCA

xhi=600;
doses = { 0, 563}*1. (* mg/kg-d LTWAM *);
ndosed = {48, 50};
nrespond = (11, 38};

G3
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G4

QTCE3=QFit[doses, ndosed, nrespond, 500,
PolyDegree->1, Exponentiated->True,
ConfInterval->.90, Output->Q1,

¥min->-xhi/100,Xmax->1.01*xhi, Ymin->0, Ymax->1];

The Optimized Function F of Dose d is:

F(d)

1 - exp{-P(d)]., where:

P(d)

0.260283+0.00207253d
ChiSquare(0) = 0. Perfect fit.
R?= 1.

F(d) vs Data

(& Bootstrap 90% Conf. Limits on Data)

1r
0.8
0.6
04 _
0.2 [

0 100 200 300 400 500 600

m 4. NTP 1983 Mouse B6C3F1: F33g HCC or HCA:

xhi=600;

doses = { 0, 563}*1. (* mg/kg-d LTWAM ¥*);
ndosed = {41, 41}:

nrespond = { 4, 19);

G4
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G5

QgTCE4=QFit [doses, ndosed, nrespond, 500,
PolyDegree~>1, Exponentiated->True,
ConfInterval->.90, Output->Q1,
Xmin~>-xhi/100,Xmax->1,01*xhi, Ymin->0, Ymax->1];

The Optimized Function F of Dose d is:

F(d) 1 - exp[-P(d)]}, where:

P(d)

0.102654+0.000923402d

ChiSquare(0) = 0. Perfect fit.

R?= 1.

F(d) vs Data

(& Bootstrap 90% Conf. Limits on Data)

1

0.8
0.6
0.4
0.2}

0 100 200 300 400 500 600

= 5. NTP 1983 Rat F344/N: M 340 g

xhi=300;
doses = { 0, 198, 282}*1.
ndosed = {33, 20, 16)};
nrespond = ( 0, 0, 3};

RenalTub Adenocarcinoma

(* mg/kg-d LTWAM *);
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G6

qTCE5=QFit [doses, ndosed, nregpond, 500,
PolyDegree->2, Exponentiated->True,
ConfInterval->.90, Output->Q1,
Xmin->-xhi/100,Xmax->1.01*xhi, Ymin->0, Ymax~>.5];

The Optimized Function F of Dose d is:

F(d)

1 - exp[-P(d)], where:

P(d) = 2.35123x10°% &°

ChisSquare(2)= 1.96373 1-tailed p= 0.374612
R?= 0.485332
F(d) vs Data

(& Bootstrap 90% Conf. Limits on Data)

0.5
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u 6. Bell et al. 1978 Mouse B6C3F1: M 35(?) g HCC or HCA

xhi=300;
doses = { 0, 42.3, 127, 254}*1. (* mg/kg~d LTWAM *);
ndosed = {99, 95, 100, 97});
nrespond = {20, 35, 38, 53};
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QTCE6=QFit [doses, ndosed, nrespond, 500,
PolyDegree->3, Exponentiated->True,

ConfInterval->.90, Output->Q1,
Xmin->-xhi/100,Xmax~>1.01*xhi, Ymin->0, Ymax->1];
The Optimized Function F of Dose 4 is:

F(d) = 1 - exp[~P(d)}., where:

p(4d)

0.287436+0.00181511d+2.65261x107° &°
ChiSquare(l)= 3.29871 1-tailed p= 0.0693345
R*= 0.881871

F(d) vs Data

(& Bootstrap 90% Conf. Limits on Data)

1
0.8
0.6
0.4
0.2

0 50 100 150 200 250 300

= 7. Henchler et al. 1980 Mouse Han:NMRI: F 30(?) g Malig. Lymphoma
Henchler did not consider this positive--called the study negative;

High spontaneous Malig. Lymphoma incidence is peculiar to this strain of mice in females (inborn
murine lymphoma virus)

p=0.03 by Fisher Exact for females (this data set); p=1 for males

xhi=200;
doses = { 0, 33.2, 166}*1. (* mg/kg-d LTWAM *);
ndosed = {29, 30, 28};
nrespond = { 9, 17, 18};
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QTCE7=QFit[doses, ndosed, nrespond, 500,
PolyDegree->2, Exponentiated->True,
ConfInterval->.90, Output->Q1,

Xmin->~xhi/100,Xmax->1.01*xhi, Ymin->0, Ymax->1];
The Optimized Function F of Dose d is:
F(d) = 1 - exp[-P(d)], where:

P(4d)

0.54236+0.003389764d

ChiSquare(l)= 2.3744 1-tailed p= 0.123339
R*= 0.673392

F(d) vs Data

(& Bootstrap 90% Conf. Limits on Data)

0.8

0.4F
0.2}

0 50 100 150 200

m 8. Maltoni et al. 1986 Mouse Swiss: F 30(?) g Malig. Hepatoma

xhi=250;
doses = { 0, 35.3, 106, 212}*1. (* mg/kg-d LTWAM *);
ndosed = {90, 90, 90, 90};
nrespond = { 4, 2, 8, 13};
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QTCE8=QFit[doses, ndosed, nrespond, 500,
PolyDegree~>3, Exponentiated->True,
' ConfInterval->.90, Output->Q1,
Xmin->-xhi/100,Xmax->1,01*xhi, ¥min->0, Ymax->.25];

The Optimized Function F of Dose d is:
F(d) = 1 - exp[-P(d)], where:

P(d) = 0.0329504+0.000306602d+1.36839x107% a?

ChiSquare(l)= 1.62806 1-tailed p= 0.201971
R%?= 0.911347
F(d) vs Data

(& Bootstrap 90% Conf. Limits on Data)

0.25
0.2
0.15
0.1
0.05 |

0 50 100 150 200 250

qall = {qTCEl, QTCE2, QTCE3, qTCE4, QTCES5, qTCES,
QTCE7, qTCES8};

m Weighted-Average TCE Cancer Potency

u Define qall
cdfs = CAf /eqall;

PlotCdf [cdfs, Xmin -> ~.0001, Xmax -> .008];

1
0.8
0.6
0.4
0.2

0 0.002 0.004 0.006 0.008
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Remove Henchler lymphoma data, due to his determination that this was a negative study given the likelihood of murine
lymphoma virus involvement:

cdf7 = Drop [cdfs, {7}]; CA£Q /@cdf7

{True, True, True, True, True, True, True}

PlotCdf [cdf7, Xmin -> -.0001, Xmax -> .008];

0 0002 0004 0006 0.008

Replot to look nicer:

PlotCdf [cdf7, Xmin ~> ~104 -6, Xmax -> .00401];
1

532 f//ﬁ

0.001 0.002 0.003 0.004

o= {EV[#], Ed£[#, 0], TA£[#, {.5, .95}]}&/@cdf7;

oo = Prepend [Transpose [Prepend [Transpose [Flatten/@o0],
Range[7]]], {"Study", Mean, PO, "50th%ile", "95th%ile"}];

TBL[oo0]

Study Mean PO 50th%ile 95th%ile

1 0.00151724 0.018 0.00162322 0.00224792
2 0.000100304 0.624 0 0.000474276
3 0.0021167 0 0.00207564 0.00294787
4 0.000933588 0 0.000915365 0.00142873
5 0.0000371087 0.854 0 0.000283281
6 0.00148119 0.028 0.00152863 0.00246978
7 0.000282383 0.342 0.000246207 0.000755992

Study-Weighting Logic:

{Species, Strain, Sex, Site, Study }-specific data are equally likely, therefore:

Data sets {{{{1,3,6},{2,4}}, 8}, 5}={mouse,rat}={mouse{b6c3f1{m,f},swiss},rat}
get relative weights: {1,1} = { { {{1,1,1}, {1.5,1.5}}, 6}, 12}
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(Note that Henchler lymphoma data was removed, due to his determination that this was a negative study given the

likelihood of murine lymphoma virus involvemeélt.)

ww={{{{1, 1,1}, {3/2, 3/2}}, 6}, 12} /24;
studies = {{{{1' 3, 6}1 {21 4)}: 8}1 5};
bwg = {{{{341 37, 35}, {29, 33}}, 30}, 340});

wt = Transpose [Flatten /@ {studies, ww, bwgl];
swt = Soxt[wt];

weights = #[[2] ]& /@swt;
bwg = Last /@swt;
{ww, wt, swt, weights, bwg}

2 4 24 24’
1 1 1 1 1
{6, 2z 35} {2, 5z 29}, {4, 5. 33}, {8, F. 30}, {5, 5, 340}}, {{1,
1 1 1 1 1 1
{2. 15+ 29} (3. 5737} {&. 55 33}, {5. 5. 340}, {6, <7 35} {8, . 30}}.

Average the study-specific cdfs using the study-specific weights (“weights") defined above, plot the results, and get statistics

for the resulting averaged cdf ("adfBW") based on a body-weight (i.e., using a mass-per-kg-body-weight) approach to

interspecies scaling of equitoxic doses.

adfBW = AverageCdf [cdf7, Weights -> weights];
adfBW >> "BogenHD:Ken:Projects:TCE Air Force:QbwCdf";

PlotCdf{adfBW, Xmin -> -104 -6, Xmax -> .003, Ymin -> .499];

1
0.9
0.8
0.7
0.6

0 0.00050.0010.00150.0020.00250.003

ol = {Length{adfBW], EV[adfBW], Edf [adfBW, 0],
Idf{adfBW, .95]}:

TBL[ { {Length, Mean, P0, "95th%ile"}, ol}]

Length Mean PO 95th%ile
1421. 0.000366899 0.553417 0.00187624

Multiply the abscissa of each cdf by (Wh/BW)A.25, where Wh = 70 kg and BW is rodent body weight in grams, i.e., scale
using a BW” scaling factor. Then re-average the cdfs using the same study-specific weights as used above, to obtain the
resulting averaged cdf (“adf75") based on a (body weight)” (i.e., using a mass-per-(kg body weight)™) approach to

interspecies scaling of equitoxic doses.
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7

bwr75 = (70 %1000 / bwg) * .25
{6.73604, 7.00931, 6.59514, 6.7865, 3.78795, 6.6874, 6.95015}
cdf75 =

Transpose /€@ ({#[[1, 1]] «#[ (2], #['[1, 2]]}&/@Transpose({Transpose /@€cdf7, bwr75}]):;
Dimensions /@#& /@ {cdf7, cdf75}

{{{298, 2}, {62, 2}, {143, 2}, {109, 2}, {22, 2}, {488, 2}, {309, 2}},
{(298, 2}, {62, 2}, {143, 2}, {109, 2}, {22, 2}, {488, 2}, {309, 2}}}

adf75 = AverageCdf [cdf75, Weights -> weights];

Plotcdf [ (adf75, adfBW}, Xmin -> -104 -6, Xmax -> .02, Ymin -> .499];

1
0.9
0.8
0.7
0.6
0.5

0 0.005 0.0t 0.015  0.02

o2 = {Length[adf75], EV[adf75], Edf [ad£f75, 0],
Idf[adf75, .95]};
TBL[ { {Length, Mean, PO, "95th%ile"}, 02}]

Length Mean PO 95th%ile
1421 0.00242109 0.553417 0.0125937

Average the cdfs "adfBW" and "adf75" assuming equal likelihood, standardize, simplify, plot, get statistics, and save:

ade = AverageCdf [ {adfBW, adf75}, Weights -> {.5, .5}]:
ade = StandardizeCdf [ade, 500];
adf = SimplifyCdf[ade];

Dimensions /@ {ade, adf}

{{501, 2}, (226, 2}}
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PlotCdf [ {adf75, adfBW, adf}, Xmin -> -.00002, Xmax -> .02, Ymin ~> .49];

1
0.9
0.8
0.7
0.6
0.5

0  0.005 001 0015 002

0l2 = {Length{adf], EV[adf], Edf[adf, 0], Idf[adf, .95]};
TBL[ { {llength, Mean, PO, "95th%ile"}, 012}]

Length Mean PO 95th%ile
228 0.00140008 0.552 0.00902774

a Define adf

WriteMatrix["BogenHD:Ken:Projects:TCE Air Force:Qcdf.txt", N[adf]]:

TCE Threshold (Cytotoxicity) Model

m TBARS dose-response in male B6C3F1 mice

27-g male B6C3F1 mice (Larson & Bull, 1992)
Dose in mg TCA per kg BW, vs. TBARS in nmol malondialdehyde equiv./g liver (n=4 @ ea. dose)

df = 3;

TBARScontrol = 40;

SDcontrol = 4;

dose = Log{10., {100, 300, 1000, 2000}];
thars = {46, 67, 81, 108} - TBARScontrol;

sd:\/{G, 7, 6, 7T}* +42;
dat = Transpose[{dose, #}]&/@ (tbars + g8d, tbhars - sd, tbars};
{t95 =RQ[Q, T, 3, .95], TBARSY5 = t95 x SDcontrol, TBARShi = Last [tbars]}

{2.35336, 9.41345, 68}

fxn[dose_, p_] :=p[[1]] + NormalCdf[ (dose-p[[2]1]) /p[[3]1]1]

List "o" = {parameter estimates, corresponding SE values, { x2, df, p-value}}:
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o = LSMin[dose, tbars, {140, 4, 1} + £xn,
Weights » sd+ -2, KnownVariances - True, Progress -+ True, Step ~» 1074, Output -» CVM]

0 {{140., 4., 1.}, 29.8243}

1 {{140., 3.996, 1.00361}, 29.2399}

2 {{140., 3.95962, 1.03601}, 24.2432}

3 {{140.001, 3.77426, 1.17963}, 7.75091}
4 {{140.004, 3.49797, 1.11006}, 2.23287}
5 {{140.007, 3.3745, 0.864436}, 1.33394}
6 {{140.023, 3.38641, 0.882103}, 1.3235}
7 {{140.175, 3.38757, 0.882599}, 1.32304}

{{140.023, 3.38641, 0.882103},

{{89321.2, 661.561, 283.881}, {661.561, 4.91457, 2.1214}, {283.881, 2.1214, 0.945736}},
{1.32304, 1, 0.250047}}

/

vars = Diagonal [Sgrt{o[[2]]]]1: f
vars = Table[vars([[i]] vaxrs{[3]], (i, 3}, {j, 3}];:
o[[2]] / vars

{{1., 0.998504, 0.976729}, {0.998504, 1., 0.983998}, {0.976729, 0.983998, 1.}}

Clear|[£fxn];

sdraw = «/Z sd;
fxn[dose_, p_] := 100 « NormalCdf [ (dose -p[[1]]) /p[[2]11]

o = LkSMin[dose, tbars, {3, 1}, fxn, NYatX-» {4, 4, 4, 4},
SDY -» sdraw, Weights - sdraw4 ~2, KnownVariances -» True, Progress - True,
Step - 10°%, Output - CVM]
L

0 {{3.,1.},16.1584}

1 {{3.0001, 0.999935}, 16.1557}
2 {{3.00104, 0.999284}, 16.1294}
3 {{3.00964, 0.993005}, 15.8937}
4 {{3.05248, 0.944763)}, 14.7945}
5 {{(3.06417, 0.786705}, 13.6469}
6 {{3.05095, 0.731969}, 13.5613)

7 {{3.05227, 0.734029}, 13.5611}

{{3.05095, 0.731969}, {{0.0084548, 0.00477488}, {0.00477488, 0.0311052}},
{13.5611, 14, 0.482896}}

vars = Diagonal [Sqrt{o[[2]]]];
vars = Table[vars[[i]] vars[[j]]., (i, 2}, {3, 2}]:
o[[2]] / vars

{{1., 0.294438}, {0.294438, 1.}}
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{0.00845479840778034485", 0.0311052466621742773 }4+.5

{0.09195, 0.176367)

o = LSMin[dose, tbars, {3, 1}, fxn, NYatX » {4, 4, 4, 4},
SDY - sdraw, Weights -+ sdraw* -2, KnownVariances - True, Progress - True, Step - 107°]

0 {{3.,1.}, 16.1584}

1 {{3.0001, 0.999935}, 16.1557}
2 {{3.00104, 0.999284}, 16.1294}
3 {{3.00964, 0.993005}, 15.8937}
4 {{3.05248, 0.944763}, 14.7945}
5 {{3.06417, 0.786705}, 13.6469}
6 {{3.05095, 0.731969}, 13.5613}

7 {{3.05227, 0.734029}, 13.5611)

{{3.05095, 0.731969}, {0.09195, 0.176367}, {13.5611, 14, 0.482896})}

o= {{3.05095121221202791", 0.731969108012972302"},
{0.0919499777475793855", 0.176366795804012603"},
{13.5610834321759421", 14, 0.482895537121049489°}};

PlotData[dat, FitTo » {{fxn[d, o[[1]]], TBARS95 + 10°° +d}, 4},
Xmin + -.01, Xmax - 3.5, Ymin - -,01,
Style » {M, J, M, 00}, DotSize - ,015,
Dashed -+ {False, .025}];

70
60
-50
40
30
20
L R T 1o ———

0 .
0 05 1 16 2 25 3 35

end

m Effective acute TCA threshold dose (mg/kg) for TBARS elevation

Simulate 2 correlated T-distributions each with 2 degrees of freedom:
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simT = Simulatecdf [ {{T, 14}, {T, 14}}, 2000, Correlate -» {{1, .294}, {.294, 1}}]:

Output-Sample Rank-Correlation Mat;rix:

o203 1.2%

Jennrich's Asymptotic Chi-Square Test of Homogeneity
Between Input & Target Correlation Matrices

For 2000 2-Variate Normal Samples:

Chi2(1)= 0.00189492 1-tail p= 0.965279 (NS)

Construct 2000 simulated model-parameter sets, and 2000 corresponding values of d95 | fxn[{p1,p2},d95] = TBARS9S,
where d95 is dose on a log10(mg/kg) scale. )

{{p1l, p2} =o([1]], {sdpl, sdp2} =o[[2]]}

{{3.05095, 0.731969}, {0.09195, 0.176367}}

pls =pl + 8dpl + simT[[1]];
P28 = p2 + 8dp2 * simT[[2]];

{pval = TBARS95 / 100, zval = NormalCdf [TBARS95 /100, Inv]}

{0.0941345, -1.31572}

d95 = pls + p2s % zval;
cdf = CA£{d95];

PlotCdf [cdf, Xmin - .99, Xmax -+ 3, ¥Ymin » -,01];

1
0.8
0.6
0.4
0.2

0 .

1 1.5 2 2.5 3
cdf »> "BogenHD:Ken:Projects:TCE Air Force:Data:LnDose95";
cdf = << "BogenHD:Ken:Projects:TCE Air Force:LnDose95";

dat = {(#[[1]], Log[10., #[[2]]]}&/@Rest [Take[cdf, 51]];
loglOp = Fit[dat, {1, log10d}, logl0d]

-7.60151 +3.67626 loglQd
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FIT[dat, {1, 1logl0d}, logl0d, Report - True];
General Linear Model (GLM):

E[Y|logl0d] = g[0] +1logl0dqg[l]

Coef LS Est. SD 95%LCL 95%UCL
[o3 0} ~7.60151 0.0794449 -7.76125 -7.44178
qll 3.67626 0.052125 3.57146 3.78106

R%= 0.990442

F(1,48)= 4974.17 2-tail p= 0.

PlotData[dat, Xmin » 1.1499, Xmax -+ 1.65,
¥min -+ -3.501, Ymax + -1.499, Style -» {00}, DotSize » .02, FitTo » {logl0p, loglod}];

-1.5

-2

-2.5

12 13 14 15 16

logp = Range[-9, -3.5, .25];
logd = (logl0d /. NSolve[loglOp == #] [[1]])&/@logp

{-0.38041, -0.312406, -0.244402, -0.176398, -0.108394, -0.0403904, 0.0276135,
0.0956174, 0.163621, 0.231625, 0.299629, 0.367633, 0.435637, 0.503641, 0.571645,
0.639648, 0.707652, 0.775656, 0.84366, 0.911664, 0.979668, 1.04767, 1.11568}

- add = Transpose[{logd, 104 logp}];

u Define cdfD95 = Prob{significant TBARS elevation} | Effective TCA dose (mg/L plasma)
(with abscissa units of mg TCA/L plasma based on Larson & Bull (TAP 115:268-277, 1992) using:
Vd =15.0 mL
Cmax = 790 nmol TCA/mL plasma = 129.1 mg TCA/mL plasma
100 mg TCA in water administered by gavage)

cdfD95 = Prepend[{ (L0A#[[1]]) » (130./100), #[[2]]}&/@Join[add, Rest[cdf]], {0, 0}];:
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Take [cd£DI95, 26]

1 -9 -9
1600000000/ * {0.633195, 1.77828x107"}, {0.740528, 3.16228x107"},

{0.866054, 5.62341x10°}, {1.01286, 1.x107®}, {1.18455, 1.77828x107°},
(1.38534, 3.16228x10°%}, {1.62017, 5.62341x107%}, {1.89481, 1.x107"},
{2.21599, 1.77828x107"7}, {2.59163, 3.16228x107"}, {3.03093, 5.62341x107"},
{3.54471, 1.x107%}, {4.14557, 1.77828x10°°}, {4.84828, 3.16228x10°°},
{5.67011, 5.62341x10°%}, {6.63126, 0.00001}, {7.75532, 0.0000177828},
0
0

{10, 03, {0.541419,

{9.06992, 0.0000316228}, {10.6074, 0.0000562341}, {12.4054, 0.0001},

1 1
{14.5083, 0.000177828}, {16.9675, 0.000316228}, {19.3012, Eﬂﬂﬁi}' {20.8328, EIRRT}}

PlotCdf [cdfDS5, Xmin + -.01, Xmax » 600, Ymin ~» -.001];

1

0.8
0.6
0.4
0.2

0 100 200 300 400 500 600

cd£fD95 »> "BogenHD:Ken:Projects:TCE Air Force:Data:TBARSvVICA";

end

end
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Appendix 2.H
TCE Risk

<< RiskQ";

HardDrive = "BogenHD";

PathName [filename_, hardDrive_String: HardDrive] := Module[{file = filename},
If [Head[file] =!= String, file = ToString([£file]]:
StringJdoin[hardDrive, ":Ken:TCE Air Force:Data:", file]

i

m Log-Transform Utility Functions

GMGSDx: :usage = "GMGSDx|[Mx,SDx] returns the geometric mean and geometric sdandard
deviation of a lognormal variate X that also has the specified arithmetic mean Mx
and arithmetic sdandard deviation SDx, based on the method of moments.*;

MSDx: :usage = *MSDX[GMx,GSDx} returns the arithmetic mean and arithmetic sdandard
deviation of a lognormal variate X that also has the specified geometric mean GMx
and geometric sdandard deviation GSDx, based on the method of moments.";

GMGSDx1: :usage = “GMGSDx1[cvWant,cv2] returns the GM and GSD of a lognormal variate
X1, such that the product X1%X2 has the desired coefficient of variation (CV) =
cvWant, conditional on the lognormal variate X2 having an arithmetic
mean and CV equal to 1 and cv2, respectively, based on the method of moments.";

-MSDx[GMx_, GSDx_] := Module[ {mux, sigy},
sigy = Log[GSDx] ;
mux = GMxX EA ((sigy+2) /2);
mux {1, Sqrt[E4 (sigy*2) -1]}]

GMGSDx[Mx_, SDx_] := Module[ {muy, sigy}.,
s8igy = Sqrt[Log[l + (S8Dx/Mx) 421];
muy = Log [Mx] - (sigy*2) /2;

E* {muy, sigy}]

GMGSDx1 {cvWant_, cv2_] := Module [ {myl},

11:

ev2? 41
muyl = Log[Sqrt[————
cvWant? + 1

E4 {muyl, Sqrt[-2muyl])

] /: cvWant >»= cv2

m Extrapolation Factors (cf. Slob & Pieters, Risk Anal., 1998; EPA)

Assumed that median is central target for uncertain EF, expected value is central target for heterogeneous EF.
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H2

EFinterspTdyn: Uncertain (Median =1)

{{z95, 299} =RQ[Q, N, {0, 1}, {.95, .99}], sdy = Log[3 /1] /z99, gsd = E* sdy}

{{1.64485, 2.32635}, 0.472248, 1.60359}
EFintraspTdyn: Heterogeneous (Mean = 1)

{Log[10/1] /299, E* (Log[10 /1] /299)}

{0.989785, 2.69066, 4.1787}

rule = Solve[ (mux / gmx) == E4 (gigp«sigp/2), gmx] [[1]]
siqu

{gmx—»E' 2 mux}

Solve[sigp == (Log[xp /gmx] /. rule) / zp, sigp]

{{sigp-azp—\/zpz_zLog[I—n’%%] }. {sigp_;zp+\/zp2_2Log[_I_n_x‘?}_{_] 1)

104 (2/3.)

4.64159

{say = z99-\/2992 ~2Log(5], muy = -~sdy *sdy /2, gmx = E4muy, gsdx:E*sdy}

{0.845464, -0.357404, 0.69949, 2.32906}

{gmxxEA (sdy «z99), 5/ gmx}

(5., 7.14807)

(EF = 1+U): acute -> subchronic -> chronic EF, where EF>=1 and U is Uncertain (Median = 2x3 = 6)

{{sdyA =Log([6/3] /299, gsd = EAsdyA}, {sdyB=Log[10/2] /z99, E4*sdyB},
{say = \/ sdyA’ + sdyB’ , E*sdy}}

{{0.297955, 1.3471}, {0.69183, 1.99737}, {0.753264, 2.12392})

EFinterspTdyn = {LN, Log[{1, 1.60359450162908601 }1};
EFintraspTdyn = {LN, Log[{0.700, 2.33}]}:
EFacuteTosubchr = {ILN, Log[{3, 1.347101312394700217}]};
EFsubchrTochr = {LN, Log[{2, 1.99736804456840957 }]};
EFacuteTochrl = {LN, Log[{5, 2.12392092140740462"}]};

frisk[cdf_] := RQ[CAE, cdEf{[1]], cdE[[2]], 2000];
{cdfEFinter, cdfEFintra, cdfEFchronl} =

frisk /e {EFinterspTdyn, EFintraspTdyn, EFacuteTochrl};
{EFinterspTdynaAng, EFintraspTdynBar, EFacuteTochrlAng} =

(EV[#, Empirical ~» Truel& /@ {cdfEFinter, cdfEFintra, cdfEFchronl})

{1.11699, 0.997245, 6.62175}

EFintraspTdynBar = 1;
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end

Effective Dose

= Genotoxic effective dose (EgBar, EgAng)

Exposures are all in units of (mg/kg-d) x 1000 (see "D. Effective Genotoxic Dose"):

Clear[cdfEingestBar, cdfEingestAng,
cdfEdermalBar, cdfEdermalAng, cdfEinhaleBar, cdfEinhaleAng,

EingestBar, EingestAng, EdermalBar, EdermalAng, EinhaleBar, EinhaleaAng, o,
EingestBarAng,

EinhaleBarAng, EdermalBarAng, EingestAngBar, EinhaleAngBar, EdermalAngBar];

o = Get /@ (PathName [#1]&) /@

{EingestBar, EingestAng, EdermalBar, EdermalAng, EinhaleBar, EinhaleAng};
{cdfEingestBar, cdfEingestAng, cdfEdermalBar,
cdfEdermalAng, cdfEinhaleBar, cdfEinhaleang} = o;
{EingestBarAng, EingestAngBar, EdermalBarAng,
EdermalAngBar, EinhaleBarAng, EinhaleAngBar} = (EV[#, Empirical - True]&/€o);

o = {{EingestBarAng, EinhaleBarAng, EdermalBaring},

{EingestAngBar, EinhaleAngBar, EdermalAngBaxr}}
{{0.0507837, 0.00235084, 0.0071258}, {0.0491639, 0.00225019, 0.00684773}}
Plusee#s&/e@o

{0.0602603, 0.0582618}

. cdfBar = { ({EingestBaraAng™, 1} #) & /@cdfEingestBar,

({EdermalBarAng™?, 1) #)&/@cdfEdermalBar, ({ EinhaleBarAng™?, 1} #)&/@cdfEinhaleBar};
cdfAng = { ({EingestAngBar™®, 1} #)& /@cdfEingestAng,
({EdermalangBar, 1} #)&/@cdfEdermalang, ( {EinhaleangBar™, 1} #)&/@cdfEinhaleang);

PlotCdf [Join[cdfBar, cdfAng], Xmin- -10"!, Xmax + 5, ¥min » -107*];

1 _
0.8
0.6
0.4
0.2

0

0 1 2 3 4 5

Clear[EgBar, EgAng];
cdfBar = (PluseecdfBar) / 3;
cdfAng = (Plus@@cdfAng) / 3;
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Put [cdfBar, PathName[EgBar]];
Put [cdfing, PathName[EgAng]]; "

EgBar = cdfBar;
EgAng = ¢dfAng;

EgBar = Get [PathName [EgBar]];
EgAng = Get [PathName [EgAng] ]; Cd£Q /@ {EgBar, EgAng}

{True, True}

PlotCdf [ {EgBar, EgAng}, Xmin - -107%, Xmax 5 5, Ymin - —10"] H

1

0.8
0.6
04
0.2

0

o 1 2 3 4 5
EV[#, Empirical -+ True]& /@ {EgBaxr, EgAng}

1., 1.)

Var [#, Empirical - True]& /@ {EgBax, EgAng}

{2.45519, 4.42109}

(EQE[#, 1], TAE[#, {.5, .95, .99}] }& /@ {(EgBar, EgAng)

{{0.658518, {0.844739, 1.74748, 2.59973}}, {0.769714, {0.223819, 4.81475, 10.326}}}

{{EingestAngBar, EinhaleAngBar, EdermalAngBar} /

(Plusee {EingestAngBar, EinhaleAngBar, EdermalAngBar}),
{EingestBarAng, EinhaleBarAng, EdermalBarAng} /

(Plusee {EingestBarAng, EinhaleBarAng, EdermalBarAng}) }

{{0.843844, 0.038622, 0.117534}, {0.842738, 0.0390114, 0.11825}}

Redefine {EingestAngBar,EdermalAngBar, EinhaleAngBar} each as a mean of the corresponding AngBar and BarAng

means, then derive relative contributions of {EingestAngBar,EdermalAngBar, EinhaleAngBar} to Etotal, (where Etotal =
EingestAngBar + EdermalAngBar + EinhaleAngBar).

{(Einges'tAngBar, EinhaleAngBar, EdermalAngBar} =
({EingestAngBar, EinhaleAngBar, EdermalAngBar} +
{EingestBarAng, EinhaleBarAng, EdermalBarAng}) /2,
Etotal = Plusee@ {EingestAngBar, EinhaleAngBar, EdermalAngBar},
FEingderinh = {EingestAngBar, EinhaleAngBar, EdermalAngBar} / Etotal}

{{0.04%99738, 0.00230051, 0.00698677}, 0.0592611, {0.843282, 0.03882, 0.117898}}
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HS

Etotal = 0.0593 /1000; (% mg/kg-d )
{EingestAngBar, EinhaleAngBar, EdermalAngBar} = {0.843, 0.039, .118} « Etotal

{0.0000499899, 2.3127x10™°, 6.9974 x 10"}

{EingestBarAng, EdermalBarAng, EinhaleBarAng} =
{EingestAngBar, EdermalAngBar, EinhaleAngBar};

end

= Cytotoxic exposures (EcBar, EcAng)

Clear[ECingestAng, ECingestBar, ECinhaleAng, ECinhaleBar, ECdermalAng, ECdermalBar];
ECingestAng = Get [PathName [ECingestAng]];
ECingestBar = Get [PathName [ECingestBar]];
ECinhaleAng = Get [PathName [ECinhaleAng]];
ECinhaleBar = Get [PathName [ECinhaleBar]];
ECdermalAng = Get [PathName [ECdermalAng]]:
ECdermalBar = Get [PathName [ECdermalBar]];
CdfQ /@ {ECingesthAng, ECingestBar, ECinhaleAng, ECinhaleBar, ECdermalang, ECdermalBax}

{True, True, True, True, True, True}

{ECingestAngBar, ECingestBarAng, ECinhaleAngBar,
ECinhaleBarAng, ECdermalAngBar, ECdermalBarAng} = EV[#, Empirical -> True] & /@
{ECingestAng, ECingestBar, ECinhaleAng, ECinhaleBar, ECdermalAng, ECdermalBar}

{0.0161848, 0.0162664, 0.00835208, 0.00840379, 0.00226194, 0.0022786}

cdfCBar = { ({ECingestBarAng™', 1} #)&/@ECingestBar,

({ECdermalBarAng™!, 1} #)& /@ECdermalBar, ({ECinhaleBarang™®, 1} #)&/e ECinhaleBar}:;
cdfCAng = { ({ECingestAngBar™, 1} #)&/@ECingestang,

({ECdermalAngBar™*, 1} #)& /@ECdermalAng, ({ECinhaleAngBar™, 1} #)&/@ECinhaleAng};

cdfQ/e#& /e {cdfCBar, cdfCAng}

{{True, True, True}, {True, True, True}}

PlotCdf [Join[cdfCBar, cdfCAng], Xmin - -107%, Xmax » 5, Ymin » -107%};
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Dimensions /@cdfCAng

{{405, 2}, {405, 2}, {405, 2}}

Clear[EcBar, EcAng]:
cdfCBar = (Plus@@cdfCBar) / 3;
cdfCAng = (Plus@@cd£fCAng) / 3;

Put [cdfCBar, PathName [EcBar]];
Put [cdfCAng, PathName[EcAng]]:

EcBar = cdfCBar;
EcAng = cdf£CAng;

EcBar = Get [PathName [EcBar]];
EcAng = Get {PathName [EcAng]]; Cd£fQ /@ {(EcBar, EcAng}

{True, Trile}

PlotCdf [ {EcBar, EcAng}, Xmin -+ -10"*, Xmax » 5, Ymin » ~107*];

1

0.8
0.6
0.4
0.2

0 .
0 1 2 3 4 5

EV[#, Empirical -» True]& /@ {EcBar, EcAng}

{1.,1.}

Var[#, Empirical -+ True]& /@ {EcBar, EcAng}

{2.57639, 1.01933}

{EAf[#, 1], IAf(#, {.5, .95, .99}]}& /@ {EcBar, EcAng}

{{0.748303, {0.900642, 1.31192, 2.1726}}, {0.667287, {0.682963, 2.94235, 5.41263}}}

{{ECingestAngBar, ECinhaleAngBar, ECdermalAngBar} /

(Pluse@ {ECingestAngBar, ECinhaleAngBar, ECdermalAngBar}),
{ECcingestBarAng, ECinhaleBarAng, ECdermalBarAng} /

(Plus @@ {ECingestBarAng, ECinhaleBarAng, ECdermalBarAng})}

{{0.603938, 0.311658, 0.0844043}, {0.603605, 0.311842, 0.0845528}}

Define {CingestAngBar,CdermalAngBar, CinhaleAngBar} each as a mean of the corresponding AngBar and BarAng rﬁeans,

then derive relative contributions of {CingestAngBar,CdermalAngBar, CinhaleAngBar} to ECtotal, (where Ctotal =
CingestAngBar + CdermalAngBar + CinhaleAngBar).
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end

end

{{CingestAngBar, CinhaleAngBayr, CdermalAngBar} =
({ECingestAngBar, ECinhaleAngBar, ECdermalAngBar} +
{ECingestBarAng, ECinhaleBarAng, ECdermalBarAng}) /2,
Ctotal = Plus@@ {CingestAngBar, CinhaleAngBar, CdermalAngBar},
FCingderinh = {CingestAngBar, CinhaleAngBar, CdermalAngBar} /Ctotal}

{{0.0162256, 0.00837794, 0.00227027}, 0.0268739, {0.603771, 0.31175, 0.0844788}}

Ctotal = 0.0269; (* mg TCA/L plasma *)

{CingestAngBar, CinhaleAngBar, CdermalangBar} = {0.604, 0.312, .084]} «Ctotal

{0.0162476, 0.0083928, 0.0022596}

{CingestBarAng, CdermalBarAng, CinhaleBarang} =
{CingestAngBar, CdermalAngBar, CinhaleAngBar};

Dose-Response

u Genotoxic Potency (Qcdf)

end

Qcdf = Get [PathName [QbwCd£f] ] ;
QcdfAng = EV[Qcdf, Empirical -» True]

0.000366899

m Cytotoxic Potency (TBARSvVTCA)

TBARSVTCA = Get [PathName [TBARSVTCA] ] ;
TBARSVTCAANg = EV[TBARSVICA, Empirical - True]

185.242

{Td£f [TBARSVTCA, {.5, .95, .99}], EA£f[TBARSVTCA, 130]}

{{159.836, 395.243, 605.35}, 0.357047}
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PlotCAf [TBARSVTCA, Xmin + ~.0001, Xmax + 500, Ymin-» -.001];

1
0.8
0.6
0.4
0.2

0 "
0 100 200 300 400 500
Last [TBARSVTCA]

{1428.077620826887, 1}

PTBARS[D¢,] = Fc(Dc,) for effective acute cytotoxic dose Dg,, i.€., the risk of significant TBARS elevation conditional on
Dc,.

PTBARS = Interpolation[Append [TBARSvVTCA, {10°, 1}], InterpolationOrder -» 1];
{pTBARS[130], PTBARS[0.0269]}

{0.357047, 4.96842x1071}

end

end

TCE Risk ( <R>, Rbar)

| Sofve for 2nd-order approximation to Rc

Where Log[IO,pTBARS[d]] ~a+bLog[10,d]
where: a =-7.60 and b = 3.68 (from low-risk extrapolation; see "G. Potency")

pTBARS[d] ~ 10%a * d*b
d = Utdyn*Vtdyn*(1+Uchron)*k*B
= Ux*Vtdyn*k*B for Ux = Utdyn*(1+Uchron)

where: k = Ctotal = 0.0269 mg/L. = the B-to-Dc, scaling factor,

B= Ec = normalized effective acute cytotoxic dose Dc,,
and: BBar=BAng=1,

Utdyn = EFinterspTdyn={LN,Log{{1,1.60359450162908601" }]}, and
Ux = EFacuteTochr1={LN,Log[{5,2.12392092140740462 }1},
Vtdyn = EFintraspTdyn={LN,Log[{0.700,2.33}1}, so

dAng = 10°(Vtdyn * k)® (Ux * B)

dBar = 10%(Ux xk)”(Vtdyn * B)®
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H9

?D

D[f, x] gives the partial derivative of f with respect to x. D{f, {x, n}] gives the

nth partial derivative of f with respect to x. D[f, x1, x2, ... ] gives a mixed derivative.

(* For any constant A: %)
D[A (x+y) *b, {x, 2}]

A(-1+b) by (xy)2*?®

Thus, letting ul = Ux and u2 = EcAng, the 1st-order RcAng approx., RcAngl, must be increased by (with ul and u2
evaluated at their expected values):

Simplify[0.5 (D[A (ulxu2)*b, {ul, 2}] (0®), +D[A (ul%u2) Ab, {u2, 2}] (0?),,)]

0.5Ab (-1. +1.b) (ulu2)® (u2? (o?) , +ul® (c?),,)
ul? u2?

and, letting vl = Vtdyn and v2 = EcBar, the 1st-order RcBar approx., RcBarl, must be increased by (with v1 and v2
evaluated at their pop.-ave. values)

Simplify[0.5 (D[A (v1+v2) Ab, {vl, 2}] (%), +D[A (vi+v2)4b, {v2, 2}] (d*),,)]

0.5Ab (-1.+1.b) (viv2)® (v2? (o?) , +v1? (c?),)
v1? v2°

Recall that (o?) ,, and (o?) , are given by:

Var[#, Empirical » True]&/@ {EcBar, EcAng}

{2.57639, 1.01933}
By the method of moments, sig2Vtydn = (o?) , is given by

{med = MSDx[0.700, 2.33], sig2Vtdyn = msd[[2]] 2}

{{1.00107, 1.02344}, 1.04744}

And the mean [= muUx] and variance [sig2Ux = (o?) ,,] of Ux =ul are approximated via simulation as

{Utdyn, Uchron} = SimulateCdf[{{LN, Log[{1, 1.6035945}]},
{LN, Log[{5, 2.123921}]1}}, 2000];

Output~Sample Rank-Correlation Matrix:

1. -0.000577
-0.000577 1.

Jennrich's Asymptotic Chi-Square Test of Homogeneity
Between Input & Target Correlation Matrices
For 2000 2-Variate Normal Samples:

Chi2(1l)= 0.00066604 1-tail p= 0.979411 (NS)
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Ux = Utdyn (1 + Uchron);
{UxAng = EV[Ux, Empirical » True], sig2Ux = Var [Ux, Empirical » True]}

{8.49599, 65.5915}
Recall that

{Ctotal, EFintraspTdynBar, EFinterspTdynAng, EFacuteTochrlAng}

{0.0269, 1, 1.11699, 6.62175}

i =edaTZ0 i

{UxAng, UxAng+ 2}
{8.49599, 72.1819}

Using dAng = 10°(Vtdyn * k)® (Ux * B)?, the RcAng] increment is (with BAng=1) thus has a pop.-ave. value of
0.5%1077-%° (EFintraspTdynBar «0.0269)° (b-1) *

(UxAng « 1)® ((8ig2Ux + UxBAng~2) + (1L.02+172)) /. {
b 3.68}

2.84031x107°
Using dBar = 10°(Ux * Kb tdyn *B)®, the ReBarl increment is (with BBar=1) thus has a mean value of

0.5+107°% (Uxang+0.0269)° (b-1)
(1+1)® ((sig2vtdyn+17%) + (2.58%172)) /. {b - 3.68)

5.34197x107'°

end

m Rang (Variability Distribution)

{EFintraspTdyn, EgAng x 3, EcAng x 3} = 7 heterogeneous variates
Ug = Likelihood that Rg is true ~ U[0, 0.5] by assumption; therefore, UgAng = 1/4.

Dose rank correlations (from “F. Effcctive Dose Correlations") for: (n =50 x 500)
GingAng CingAng GinhAng CinhAng GderAng CderAng

1. 0.233 0.878 -0.00269 0.894 0.000496
0.233 1. ~0.0088 0.421 0.00439 0.514
0.878 -0.0088 1. 0.187 0.918 0.035
-0.00269 0.421 0.187 1. 0.0766 0.649
0.894 0.00439 0.918 0.0766 1. 0.177
0.000496 0.514 0.035 0.649 0.177 1.

Assign corresponding values to the upper triangular portion of the simulation-input-variate rank-correlation matrix (which
shall be denoted "corr"). Note that the first row of the matrix pertains to the EFintraspTdyn variate (i.e., the intraspecies
toxicodynamic extrapolation factor), which is not correlated with any of the 6 exposure variates.

coxr = {{0, 0, 0, 0, O, O}, {.23, .88, 0, .89, 0}, {0, .42, 0, .51}, {0.19, .92, 0.035},
{.077, .65}, {.18}};:

Verify that the Cholesky decomposition of the target rank-corrlation matrix (=Reflect[corr]) contains no imaginary parts:
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Cholesky[Reflect [corr]]

{{1, 0, 0, 0,0, 0, 0}, {0, 1, 0, 0, 0, O, 0}, {0, 0.23, 0.973191, 0, 0, 0, 0},
{0,70.88, -0.207976, 0.42702, 0, 0, 0}, {0, 0, 0.43157, 0.655136, 0.620116, 0, 0},
{0, 0.89, -0.210339, 0.217916, 0.0403333, 0.338442, 0},

{0, 0, 0.524049, 0.337196, 0.32724, 0.601429, 0.37798})

{nsam, nsim} = {2000, 10};
UgAng =1/4; (+ see Rbar section below *)
cdfs = {EFintraspTdyn, EgAng, EcAng, EgAng, EcAng, EgAng, EcAng};
Clear[£fxn];
fxn{x_, Ging , Cing_, Ginh_, Cinh_, Gder_, Cder_] := Module[
{Rg, Rcl, Rc2, Rc, a=-7.6, b=3.68, Ux, ¢ = 0.0269, Call},
Rg =
1-E*~ (QcdfAng « EFinterspTdynAng «+x* 0.0000593 (0.843 Ging + 0.039 Ginh + 0.118 Gder)) ;
Ux = EFinterspTdynAng * (1 + EFacuteTochrilang) ;
Call = 0.604 Cing + 0.312 Cinh + 0.084 Cder;
Rcl = pTBARS ([Ux*x+xc+Call];

.
r

Ro2 = 0.5%10% (x*¢)” (b-1) » (8.50%1)" (65-59 1002)

+
72.18 1
Rec = Rel + Re2;

1- (1-UgAng*Rg) (1-Rc)

]:

EFintraspTdynBar = 1; {EFintraspTdynBar, EingestAngBar, EinhaleaAngBar,
EdermalAngBar, CingestAngBar, CinhaleAngBar, CdermalAngBar}

{1, 0.0000499899, 2.3127x107°%, 6.9974x107°, 0.0162476, 0.0083928, 0.0022596}

fyxn (EFintraspTdynBar, 1, 1, 1,1, 1, 1]

6.78312x107°

Timing{siml = Table[SimulateCdf [cdfs, nsam, Correlate -» corr, Report - Append], {nsim}];]
{399.317 Second, Null}

(* Check Jennrich X2 p-values *)

jenp = Transpose [ {Range[Length[giml]], Last /@Last /@Last /@siml}]

{{1, 0.999999}, {2, 0.996311}, {3, 0.887823}, {4, 0.999861}, (5, 0.850753},
{6, 1.}, {7, 0.764912}, {8, 0.998435}, {9, 0.999999}, {10, 0.997622}}

{jen, cdf, cvm} =
QUAnalyze [cdfs, fxn, nsam, nsim, SimIn - siml, Correlate -+ coxrr, Scale - 10°];

TBL/@jen

MeanBAr] ZB JennrichChi2 DegFr Mln[P adJ]
-0.000621132 0 01537 16.084 21 1.
Fractile Value CVM(%)

0.01 0.0000580549 3.46591

0.05 0.000145191 1.40176

0.5 0.00197293 1.26445
0.95 0.0533094 1.94448}
0.99 0.281664 5.92463
Mean 0.024678 10.8085
Variance 0.187204 49.1916
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PlotCdf[{cvm, cdf}, Ymin + -.01, Xmin - -.0001, Xmax - .5];

1
0.8
0.6
0.4
0.2

0 :

0 0.1 0.2 0.3 0.4 0.5
Put [cdf, PathName [Rang]]; Rang = cdf;
Rang = Get [PathName [Rang] ] ; CA£Q [Rang]

True

RangBar=0.024678;

{{Rang50, Rang95, Rang99} = Idf[Rang, {.5, .95, .99}], Edf[Rang, 1]}

{{0.00197293, 0.0533094, 0.281664}, 0.997088}

end

m Rbar (Uncertainty Distribution)

{Ug, EgBar, EcBar, Qcdf, EFinterSpTdyn, EFacuteTochrl} = 6 uncertain variates
Ug = Likelihood that Rg is true ~ U[0, 0.5] by assumption

corr = {{0, 0, 0, 0, O}, {.49, 0, 0, 0}, {0, 0, 0}, {0, O}, {0}};

{nsam, nsin} = {2000, 25};
Ug = {{ol o}l {.5, 1}};
cdfs = {Ug, EgBar, EcBar, Qcdf, EFinterspTdyn, EFacuteTochrl};
Clear([£fxn}]:;
fin[ug_, Gall_, Call , g, ufl_, uf2 ] :=Module|
{Rg, Recl, Rc2, Rc, a=-7.6, b=3.68, Ux, ¢ = 0.0269},
Rg=1~-E*-(q+ufl+x1+0.0000593 Gall);
Rel = pTBARS [ufl* (1 +uf2) *1+0.0269 Call];

+
1 1

.
'

: 1.05 2.58
Rcz=o.5*1o‘(uf1*(1+ufz)*c)”(b-1)*(1*1)”( )

Rc = Rel + Re2;
1-(1-ug*Rg) (1-Rec)

1:
{QcdfAng, EFinterspTdynAng, EFacuteTochrling)

{0.000366899, 1.11699, 6.62175}
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fxn[0.25, 1, 1, QcdfAng, EFinterspTdynAng, EFacuteTochrlAng]

7.03721x10°°

Timing[{jen, cdf, cvm} = QUAnalyze[cdfs, fxn, nsam, nsim, Correlate - corr, Scale -» 10°};]

{421.6 Second, Null}

TBL/@jen
Mean Ar] £ 1 ennrlchCh:LZ DegFr Min[P-adj]
0. 1189 64 .29258 15 1. '

Fractile vValue A
0.01 0.0000564078 1 20236

0.05 0.000102103 0.796374
0.5 0.00182331 0.98663
0.95 0.0540772 1.08234
0.99 0.287938 5.10999
Mean 0.218735 23.2584
Variance 186.669 33.6675

PlotCdf[{cvm, cdf}, ¥min -+ -.0001, Xmin -+ -.0001, Xmax - .5];

1
0.8
0.6
04
0.2

0
0 0.1 02 03 04 05

Clear[Rbar];
" Put{cdf, PathName[Rbar]]:; Rbar = ¢df;

Rbar = Get [PathName [Rbar]]; CA£Q[Rbar]

True

RbarAng=0.218735;

{{Rbar50, Rbar95, Rbar99} = Idf [Rbar, {.5, .95, .99}], Edf[Rbar, 1]}
{{0.00182331, 0.0540772, 0.287938}, 0.996147}

end
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PlotCdf [ {Rang, Rbar}, ¥Ymin -+ -.0001, Xmin ~ -.000001, Xmax -+ .01];

1
0.8
0.6
0.4

0.2

0 . P
0 0.002 0.004 0.006 0.008 0.01

PlotCdf [ {Rang, Rbar}, Ymin -+ .7999, Xmin » -.000001, Xmax ~» .5];

1

0.95
0.9

0.85

0.8

0 0.1 0.2 0.3 04 0.5
PlotCdf [ {Rang, Rbar}, Ymin -+ .9899, Xmin -» ~.000001, Xmax -» 25];

1
0.998
0.996
0.994
0.992

0.99

o
6]
Y
o

15 20 25

end

Confidence Bounds on JUV in Risk

= R*99 = Analytic upper-bound JUV estimator (@ 99th %ile on U & V)

{Rang99, RangBar, Rbar99, RbarAng}

{0.281664, 0.024678, 0.287938, 0.218735}
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R*99b =rho99 x Rang99, tho99 = (Rba:99)/(<Rbai'>) <emem As defined by Bogen (1995)
R*99a =rho99 x Rbar99, rho99 = (<R>99)/(<R>bar) e Alternative definition

(x* CV for RI99«* %)
{RbarAngcv, Rbar99cv, RangBarcv, Rang99cv} = {.232, .051, .28, .11};

{rhoa = (Rang99 / RangBar), rhob = (Rbar99 / RbarAng) }

{11.4136, 1.31638}

((1- (1-#[[11]%) (1-#[[2]11") ")&/e(
{Rang99cv, RangBarcv}, {Rbar99cv, RbarAngcv}}

{0.299251, 0.237245)

{R99a = Rbar99 «rhoa, R99b = Rang99 * rhob}

{3.28641, 0.370777}

{gammaa, gammab} = (((1- (1-#[[1]]%) (1-#[[2]1]%) (1-#[[31]1%)) )a/e{
{Rbar99cv, Rang99cv, RangBarcv}, {Rang99cv, Rbar99cv, RbarAngcv}})

{0.303182, 0.2602)

m R*99 = Target-Nested Monte-Carlo JUV estimators (@ 99th %ile on V)

SimulateCdfs{Cdfs_, nsam_, nsim_, options___] := Module[{o, cdfs = Cdfs, x},
o = SimulateCdf{cdfs, nsam, options];
If[Head[o] === String, Return[StringJdoin["SimulateCdfs: Bad input\n®, o]]]:;
x = If[Dimensions[o] === {Length[cdfs], nsam}, o, o[[1]]]:

cdfs = (CAf[#1, Xmax - 10415] &) /@ x;
Prepend[Table[SimulateCdf[cdfs, nsam, options], {ngim - 1}], o]
] /; nsam > nsim > 1
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corxVs= {{0, 0, 0, 0, O, O}, {.23, .88, 0, .89, 0}, {0, .42, 0, .51}, {0.19, .92,
0.035}, {.077, .65}, {.18}}; *
cdfV = {EFintraspTdyn, EgAng, EcAng, EgAng, EcAng, EgAng, EcAng};
fxnV([x_, Ging_, Cing , Ginh_, Cinh_, Gder_, Cder_] := Module|[
{Rg, Rc},
Rg =
1-E*-(QcdfAng » EFintexrspTdynAng »x « 0.0000593 (0.843 Ging + 0.039 Ginh + 0.118 Gderx));
R¢ = pTBARS [EFinterspTdynAng « (1 + EFacuteTochrlaAng
) *x%0.0269 (0.604 Cing +0.312 Cinh+ 0.084 Cder)];
1-(1-0.25Rg) (1-Rc)

.
r

corrU = {{0, 0, 0O, O, 0}, (.49, 0, 0, 0}, {0, O, 0}, {0, O}, {0}};
cdfU = {Ug, EgBar, EcBar, Qcdf, EFinterspTdyn, EFacuteTochrl};
fanUV{ug , Gall_, call_, q_, ufl_, uf2_,
X_, Ging_, Cing , Ginh , Cinh_, Gder_, Cder_] := Module[

{Rg, Rc},

Rg=1-E4-(q+ufl*xx+0.0000593 Gall (0.843Ging+0.039Ginh+ 0,118 Gder));

Rc = pTBARS[ufl » (1 + uf2) v+

0.0269 Call (0.604Cing +0.312Cinh + 0.084 cder) 1z
- (1-ug*Rg) (1-Rc)
],

£f:nUV[0.25, 1, 1, QcdfAng, EFinterspTdyniAng, EFacuteTochrlAng, EF:.ntraspTdynBar,
1,1, 1,1, 1, 13

6.49859x107°

{nsam, nsim} = (999, 100}; {{i50, i95, 199} = (nsam+ 1) {50, 95, 99} /100}

({500, 950, 990}}

test = CAf[2 Range [nsam], Xmax -> 10 *ngan];
{Tdf[test, .99], test[[i99+1]]}

{1980, {1980, 100 }}

(CAfQ(#] | | RQ[Test, #[[1]], #[[2]]])&/@cdfV

{True, True, True, True, True, True, True)}

(CA£Q[#] || RQ[Test, #[[1]1]1, #[[2]]])&/@cdfU

{True, True, True, True, True, True}

Timing[
gimv = SimulateCdfs|
cdfV, nsam, nsim, Correlate - corrV, Report - False];
rvi = £xnvee#s /@simv;
vi= (#[[i99, 2]]& /@ (Sort /@MapThread|
Transpose [ {#1, Transpose [#2]}]&, {rvi, simv}])):;
simu = SimulateCdfs [cdfU, nsam, nsim, Correlate -» corrlU, Report - False];
vij = Transpose [Table[#, {nsam}]]&/@vi;
simin = MapThread[Join[#1, #2]&, {simu, vij}];
Dimensions[simin]]

{767.65 Second, {100, 13, 999}}
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767.65/60. min

12.7942 min

{jen, cdf, cvm} = QUAnalyze[13, £xnUV, nsam, nsim, SimIn - simin, Scale -» 10°};

TBL[jen]

Fractile Value CVM (%)
0.01 0.000275208 6.25271
0.05 0.000492571 6.05879
0.5 0.026333 8.3953
0.95 2.53276 8.89275
0.99 26.6467 12.2349
Mean 51.5572 29.8237

Variance 1.78899x10’ 51.2064

PlotCdf{{cvm, cdf}, Ymin -+ -.01, Xmin - -.0001', Xmax —+ 53 ;

1
0.8
0.6
0.4
0.2

0

0 1 2 3 4 5

end

n R*99 = Traditional Nested Monte-Carlo JUV estimators (@ 99th %ile on V)

Compare variability fractiles for the 50th, 95th and 99th %ile with respect to uncertainty, respectively, obtained using a
traditional nested Monte-Carlo approach:
{Dimensions /@ {simu, simv}, {nsam, nsim, i50, i95, 199}}

{{{100, 6, 999}, {100, 7, 999}}, {999, 100, 500, 950, 990}}

Timing[o = Transpose /@Table[
Prn[i]; Table]
uij = Transpose[Table[#[[j]]&/@simu[[i]], {nsam}]];
simin = Joinf[uij, simv[[i]]];
ruj = Sort [fxnUvee@simin] [[{i50, i95, 199}]1],
{3, nsam}], {i, nsim}];]

i= 100

{38204. Second, Null}

{38204. (60.4-2) h, 38204./767.65)}

{10.6122h, 49.7675}
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{Dimensions[o], nsam, ngim}

{{100, 3, 999}, 999, 100}

fx[xr_

in = List /@#& /@ Transpose[c];
Dimensions[in]

{3, 100, 1, 999}

{jen, cdf, cvm} = Transpose [QUAnalyze[l, £x, nsam, nsim, SimIn - #, Scale » 10°]&/@in];

Variability fractiles for the 50th, 95th and 99th %ile with respect to uncertainty, respectively:

TBL/@jen

Fractile Value
0.01

0.05
0.5

0.95
0.99
Mean

Variance

Fractile

0.01
0.05
0.5

0.95
0.99
Mean

0.0000275434
0.0000501088
0.000307087
0.0064338
0.0174277
0.0131852
2.94735

Value
0.000402496
0.000733586
0.0610779
3.18049
37.2624
71.6359

Variance 2.79463x10’

CVM (%) Fractile
0.939922 0.01
0.498607 0.05
0.378278 0.5
0.719361 ¢ 0.95
1.54854 0.9¢9
40.8619 Mean
67.2223 Variance

CVM (%)
1.42502
1.18967
2.35897
3.89965
5.28478
24.6687

42.8514

Comparison with results from targeted method:

{2.53/2.01, 26.6/37.3}

2{1.25871, 0.713137}

Value
0.000180713

0.000328785
0.00800268
0.
2
8
1

295773

.01852
.8583

.20453 x 10°

CVM(%)
1.11573

0.674825
1.4414
1.29464
4.17751
38.7753

61.4832

PlotCdf [Join[Rest [cvm], Rest[cdf]], Ymin -+ -.01, Xmin - -.0001, Xmax -+ 5];

1
0.8
0.6
0.4
0.2

0
0
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PlotCdf [Join{cvm, cdf], ¥min + -.01, Xmin - -.0001, Xmax - .25} ;

1

o.s(f

0.6

0.4

0.2

0¥

0 005 01 015 02 025
end
end

Population Risk

# expected cases for different values of total-population size, n, via the relation: <N> = n(<Rbar>). Note that Rbar (and
hence <Rbar>) was scaled above by a factor of 10°, and so needs to be rescaled by 1076,

npop = {100, 1000, 2000, 10*, 30000, 10°, 10°, 3.10795+10°%};
npop * (RbarAng*lO")

{0.0000218735, 0.000218735, 0.00043747, 0.00218735, 0.00656205, 0.0218735,
0.218735, 67.9817}

To obtain the likelihood Py of 0 people at risk associated with specified population sizes, first derive the probability mass
function corresponding to Rbar, adjust to reflect the fact that its last element is artifically high due to how QUAnalyze

defines this last element, and then use the adjusted pmf to calculate the complementary conditional Poisson likelihoods { P,
1-Py } corresponding to specified population sizes (npop):

pmf = {107 #[[1]1], #[[2]]}&/@PmE [Rbar];
{ri, pi} = Transpose[pmf]; {Plus@e@pi, Take[ pmf, -2]}

{1, {{0.000369737, _zolﬁ}' {0.0014789s, ‘iolﬁ}}}

adjpmf = Transpose| (Drop[#, -1]&/@{xri, pi 1, —— ——11;
pose | ( [ la/e{xi, pi}) { T Iast ol H
{ri, pi} = Transpose{adjpmf];

{Pluseepi, Take[ adjpmf, -2]}

{1, {{0.0000285069, ﬁ}. {0.000369737, 201T}}}
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o = {npop, npop*7.6/70, p0 = (Plusee (e * xpi))&/enpop, 1 -p0, npop + RbarAng + 1075} ;
TBL[Prepend[Transpose{o], {n, nRes, Po, 1-Po, "<N>"}]]

n nRes

100 10.8571
1000 108.571
2000 217.143
10000 1085.71
30000 3257.14
100000 10857.1
1000000 108571.

3.10795%x10% 3.37435x10’

To obtain the # people at risk associated with Py=0.5, use the adjusted pmf to calculate the conditional Poisson likelihood

Po
0.
0.

[eNeYoloYo) o]

999978
999812

.999672
.999193
.998634
.99717

.984529

.5

1

O OCOOCOO0O0O0O

- Po
.0000215338
.000188196
.000328208
.000806618
.00136577
.00282987
.0154713

.5

<N>
0.0000218735
0.000218735
0.00043747
0.00218735
0.00656205
0.0218735
0.218735

6

7.9817

corresponding to a likelihood of 0.50 (by manual numerical optimization [not shown)) :

Plusee (e-a.iovss-m' srd o pi)

0.5

Thus, only if >300 million people were exposed would it be more likely than not that there would be 1 or more cases!

end
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Appendix 2.1

Functions Used

m Mathematica® functions

Note: The following Mathematica shorthand notation was used that is not included in the list of functions below:
atb=aplusb
a-b = a minus b
ab=a*b = the product of aand b
a/b =a divided by b
a’b = a to the power of b
{a,b,c,...} =List[a,b,c,...] = a "list" (i.e., array, vector, or set) of elements a,b,c, ... .
fxn/@{ab.c,...} = Map[fxn, {a,b,c,...}] =anew list made by mapping (i.e., applying)
the function fxn onto each member of the list {a,bc,...}

? Cholesky

Cholesky[{M] gives the Cholesky decomposition ¢ of a symetric positive definite square matrix M (
i.e., the lower triangular matrix ¢ such that ¢ ¢' = M), provided Det[M] does not equal zero.

? Dimensgions

Dimensions[expr] gives a list of the dimensions of expr. Dimensions[expr, n] gives
a list of the dimensions of expr down to level n.

? Drop

Drop{list, n] gives list with its first n elements dropped. Drop[list, -n] gives list
with its last n elements dropped. Drop{list, {n}] gives list with its nth element
dropped. Drop[list, {m, n}] gives list with elements m through n dropped.

?Flatten

Flatten[list] flattens out nested lists. Flatten[list, n] flattens to level n. Flatten]|
list, n, h] flattens subexpressions with head h.

? Last

Last{expr] gives the last element in expr.

? Length

Length[expr] gives the number of elements in expr.
? Log

Log[z] gives the natural logarithm of z (logarithm to base e). Log[b, z] gives the
logarithm to base b.
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end

? MapThread
MapThread[f, {{al, a2, ... }, {(bl, b2, ... }, ... }] gives {f[al, bl, ... ], fla2,
b2, ... ]. ... }. MapThread[f, {exprl, expr2, ... }, n] applies f to the parts of

the expri at level n.

? Max

Max[xl, x2, ... ] yields the numerically largest of the xi. Max[{x1l, x2, ... },
{yvl, ... }, ... ] yields the largest element of any of the lists.

?Min

Min[xl, x2, ... ] yields the numerically smallest of the xi. Min[{x1l, x2, ... },
{yl, ... }, ... ] yields the smallest element of any of the lists.

? Prepend

Prepend[expr, elem] gives expr with elem prepended.

? Range

Range{imax] generates the list {1, 2, ... , imax}. Range[imin, imax] generates the
list {imin, ... , imax}. Range[imin, imax, di] uses step di.

? Solve

Solve[egns, vars] attempts to solve an equation or set of equations for the
variables vars. Solvelegns, vars, elims] attempts to solve the equations for vars,
eliminating the variables elims.

? Soxrt

Sort[list] sorts the elements of list into canonical order. Sort[list, p] sorts using
the ordering function p.

? Take

Take[list, n] gives the first n elements of list. Take{list, -n] gives the last n
elements of list. Take[list, {m, n}] gives elements m through n of list.

? Transpose

Transpose[list] transposes the first two levels in list. Transpose[list, {nl,
n2, ... }] transposes list so that the levels 1, 2, ... in list correspond to
levels nl, n2, ... in the result.

m RiskQ functions

<< RisgkQ";
? AverageCdf

AverageCdf([cdfs,options:] generates a cdf which is the exact average of the input list
of cdfs and/or cmfs. By default, the input cdfs are equally weighted (i.e., all
cdfs are assumed to be equally likely). Use Weightsoweights to specify weights.
Use TestCdf-False to suppress automatic CAdfQ test of input cdfs. Use Approximate -
n (or -xlist) to return an approximation of the true average cdf evaluated at n>
1 equal abcissa intervals (or at the supplied list of abcissa values).
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?Cdf

Cdf[x, options] returns a matrix representing a cdf (cumulative distribution funtion) from which
'~ X is (assumed to be) sampled if x is a vector. The first point is {x1lo,0} where xlo is assumed
to be Min{0,Min{x]] unless xlo<Min([x] is entered with Xmin-xlo. The last point is {xhi,1}
where xhi is assumed to be Max[x] unless xhi>Max[x] is entered with Xmax-xhi. CAf estimates
the cdf corresponding to n samples of a continous random variate, using linear interpolation.
Use Weights-w to obtain a cdf based on weight-vector w corresponding to list (in which
case the Xmax option is ignored). If x is a cmf or a pmf, a corresponding cdf is
output. Use Pmf-True (or the alternative function Pmf) to obtain the probability
mass function (pmf) corresponding to list. Use Simplify-False to suppress default
distribution-simplification algorithm. To obtain the sample cdf (a step function)
corresponding to list, or to model a discrete random variate, see Cmf. See also RQ.

7 Data
Data[datarows, expr;, ...] returns a list of data rows specified symbolically as a function of
the input datarows list, where each datarows; = {Xi1, Xj3,..., Xin} has n columns, and expr,

are Data arguments. If datarows is a list but not a list of lists, then it is assumed to
specify a single data column. By default, datarows; must be a list whose jth element (name; )
is a unique symbol or string used to name the variate whose values Xj; appear in the rest of
the jth data column for j=1,...,n; however, if expr, is a vector containing n symbols and/or
strings, then expr;, j=name; is assumed. If expr; is a non-Rule expression (e.g., involving any
of the name;), then expr; is returned evaluated using the specified data column(s). Otherwise,
expr, must specify one or more of the following options (described below) to transform
datarows: Append (or Replace), Classify (or Bin), Complement, Drop, Fill, Interpolate,
Intersection, Merge, Names, Number, Rename, Restructure, Set, Shift, SortBy, Take, and/or
Union. These options are applied in the order they appear (one or more times) in expr, .
Evaluate Data[option] to get information about any Data option. Column names (e.g., name;)
appearing in any of these options are assumed to be among those defined for (e.g., as the 1st
row of) datarows; any corresponding reassigned name (e.g., X after the assignment

X=name; has been made) used should appear as an argument of HoldForm (e.g., as

HoldForm{X]). Data should be nested only if the nested expr is a rule or rule sequence.

TEV

EV[x, options] returns the arithmetic average of (e.g., a vector) x, or the expected value of x
if x is a valid cdf, omf or pmf. If x is a vector, Weights-ow may be used to obtain the
weighted average value corresponding to the weights-vector w applied to x. If x is
a cdf with >2 evenly spaced ordinate values (i.e., evaluated at equal probability
intervals) and Empirical-True, then the minimum and maximum abscissa values are ignored.

?EdE

Edf: See EvaluateCdf, RQ.

? EvaluateCdaf

EvaluateCdf[cdf, x,complement:False] calculates the probability p that a random variate
distribituted as cdf is less than or equal to x, using linear interpolation.
If a third argument, True, is included, the output probability is 1-p. The input
x may be a list, in which case a corresponding output list is generated.
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?FIT

FIT[xy. fxn_List, x_Symbol, options] fits the General Linear Model (GLM), y(X) = Sum([qgi Fi(x)]
for i=1...np, to xj-yj data (for j=1...n) given in xy (an n-by-2 matrix) by direct or
generalized least-squares regression, assuming yj are normally distributed as N(Ey3j,Sqrt(v/
wj]) with wj=1 by default and v estimated by the mean square of y-residuals (unless
KnownVariances—» True is used, in which case yj ~ N(0,Sqrt[1/wj] is assumed). Use NYatX-nyj,
with integer nyj>0 (ny=1 by default) or nyj an n-lengthed such list, to treat yj as means, in
which case corresponding sample stand. devs. sj of nyj y-values must be specified using Errors-
sj. Use Weights-wj to similarly specify known weights wj; or use Weights-{Wyhat, yhat, df} to
specify that wj=(Wyhat| yhat=y(xj)) or that wj=(Wyhatj|yhat=y(xj))}--where Wyhat is an
expression (or Wyhatj is a list of n expressions each) involving the symbol yvhat--in which
case the fit is obtained by iterative reweighting assuming df (=0 if not specified) extra
degrees of freedom are lost in estimating Wyhat from the data (& use MaxIterations -maxit and/
or Tolerance-stol to override defaults). If Report-True, SDs and 100p% conf. limits on ai, R?,
a chi-square test-of-fit, ANOVA table, F-tests of GLM-fit and nonzero gi for i>Q, and a plot
are all printed (use Report-Plot to add a plot). The qi estimates are output, along with:
covariance matrix, the list {xval,yhat,yLCL, yUCL}, a sum-of-squares & assoc. degree-of-
freedom matrix, the F-values and their p-values, the chi-square value and its p-value,
the fitted function, and/or a plot using Output-{CV, xval, SumSquares, ¥, PvalF,

X2, PvalX2, BestFit, [and/or] Plot}, where xval may be a list. Use Confidence-p
to change p from 0.95, and use Xmin-xlo, etc.(see PlotData Options) to change plot defaults.

? IdE N

Idf: See InverseCdf, RQ.

? InverseCdf

InverseCdf([cdf, p, options] evaluates cdf at the cumulative probability value p, for any
valid cdf or cmf. The input p may be a list of probability values, in which case
a corresponding output list is generated. Use TestCdf->False to suppress default CdfQ test.

? NormalcCdf

NormalCdf{z, s:, n:100] = the standard Gaussian cdf; i.e. the probability p that Z<=z for real z
and standard normal random variate Z. If z is a list, p is the corresponding list. If s is
set to Inv, then the inverse standard Gaussian cdf is returned for argument(s) z where
0<=z<=1. If s is entered as a nonegative real number, then an approximate cdf is
returned corresponding to the parameters {z= mean, s= stand. dev.} for a nonstandard
random variate Z, evaluated at n equiprobable quantile intervals. In evaluating
the inv. stand. Gaussian cdf for Min[p,1-p]>2.21 10°-7, NormalCdf makes use of an
l1lth-order polynomial approximation with an absolute error < 0.503 107-6.

? PlotCdf

PlotCdf[cdfs] returns a plot of a cdf or of several cdfs entered as a list of cdfs.
See PlotOptions.

? PlotData

PlotData[data,options:] plots an N-by-2 (or (x vs y) data set (DS), or a list of n such sets,
with points joined by lines (unless JoinPoints->False is used). Change point style with Style->
list which by defualt is {00,0A,0B,0V,0D,0,A,B,V,D} = {open Point, Triangle, Square,
InvTriangle, Diamond, ... (& their solid equivs.)}; use {TO,TA,TB,TV,TD} for transparent open
symbols; use {P,X,M,I} for {plus,cross,dash,bar}; & use J to join points from adjacent DSs.
Size and JoinPoints may be n-lengthed lists, where n<=Length[Style] <=2n-1 depending
on how many Js are in Style; JoinPoints->False is enforced for DSs referenced by
J in Style.Use FitTo->{f[x],x} to include a plot of f[x] (which may be a list of
functions) vs. x. Use data=Plot to plot functions only. See PlotOptions.
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? QUAnalyze

QUAnalyze{cdfs, Fxn, nsam, nsim, options:] performs a quantitative uncertainty analysis
involving simulated values Fxnjx of Fxn[var,,...,var,], where Fxn is a user-defined listable
function, j = 1,...,nsam, and k = 1, ..., nsim. Uncertainties in varj, i=1,...,n, are

specified by the corresponding input cumulative probability distributions, cdfs = {cdf,,
cdf,}, where each cdf; must be either a valid cdf object (for which TrueQ{cdf;]==True) or a
valid symbolic cdf-specification (see SimulateCdf). All cdfs are by default uncorrelated,
unless Correlate-T is used to specify T as the target rank-correlation matrix (or as its upper-
right rows--see Reflect). The list {SimReport, cdfFxn, cvmFxn} is output, where: SimReport
lists the coefficients of variation (as a %) of EV[Fxn; ]x and corresponding p-fractiles of

Fxn, the maximum of Jennrich chi-square values assessing homogeneity with T, its degrees of
freedom, and the corrsponding Hommel-adjusted p-value; cdfFxn characterizes Fxn uncertainty (
as the means of nsim sorted sets of nsam sample values of Fxn--i.e., as nsam mean Fxn-fractile
values--where nsam > n and nsam>nsim>1); and cvmFxn lists the corresponding coefficients of
variation of the nsam fractile means (and so summarizes corresponding Monte-Carlo sampling
error). By default, the minimum and maximum possible values of Fxn are assumed to be xlo = Min[
Fxnjx] and xhi = Max[Fxnjx]. respectively; use Xmin-xmin and/or Xmax-xmax to change these
defaults (provided xmin<xlo and xmax>xhi). Use Fractiles - p to specify the list of p-
fractiles of Fxn to be used to summarize simulation quality. Use SimIn-ML to specify the cdf-
simulation values to be used, where either: (1) ML is a list of nsim matrices each n-by-nsam
in dimension (as output by SimulateCdf); or (2) ML is a list of nsim elements each

of the form {M, RankCorrelations-»R, Jennrich-{x2,df,p}} (i.e., each element of

ML is a list of the form output by SimulateCdf using the Report-Append option),

where M is an n-by-nsam matrix, R is an n-by-n matrix, and x2, df, and p are

numbers with O<p<l). If SimIn is specified, the QUAnalyze cdfs argument supplied

may be the integer n. Note that cdf and cvm may be plotted together because they

use common abscissa values, which are scaled by an n-fold factor if the option Scale-sn is used.

.t

? Reflect

Reflect[upper, diagvec:Automatic, anti:False] returns an n-by-n symetric square matrix M given
upper, an (n-1)-length list of (n-1-i)-length lists (i=1,...,n) that represent the first n-1
rows of upper elements (without the diagonal elements) of M. The diagonal is a vector of ones
by default, or may be entered as the 2nd argument (either a constant or an n-length list).

If the 3rd argument is set to True, then the corresponding-antisymetric matrix is returned.

?RQ

- RQ{operation, distribution, parameter(s), z] performs an operation Cdf (=cumulative
distribution function), E=M= Mean (=expected value), V=Var=Variance, D=Range=Domain, P=Pr=Prob=
PDF, C=Edf=CDF (CC= C complement), Q=Idf=Quantile (QC= Q complement), or Test= (test validity
of 2nd & 3rd RQ parameters) on a B=Beta, Bi=Binomial, X2=ChiSquare, E=Exponential, F=FRatio, G=
Gamma, Geo=Geometric, H=Hypergeometric, LN=LogNormal, Lg=Logistic, NBi=NegativeBinomial,
N=Normal, Psn=Poisson (=P), T=StudentT, Tri=Triangular, U=Uniform, W=Weibull (=
Wbl), or M=Empirical (=Cdf=Cmf) distribution with the specified parameter value(

s) or for the particular cdf/cmf, at the point(s) z. If z is included with the
Cdf operation, the output cdf is given for z+l points.

? SimplifycCdf

SimplifyCdf{cdf] returns any valid input cdf or cmf in its simplest possible form,
that is, without any unnecessarily repeated or redundant elements.
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end

? SimulateCdf

SimulateCdf{cdf (s), nsim, options:] generates a list of nsim values simulated from an input
cdf, or of n lists of nsim values with the ith list simulated from the ith of an input list of
n cdf objects with a target rank- correlation matrix T. Input T using Correlate-sT for a square
matrix T (or its upper-right rows--see Reflect); by default T is an identity matrix. Each cdf
must be either empirical (such that TrueQ[cdfl==True) or a valid {type. par} cdf-
specification (see RQ). Simulations use a Systematic Latin Hypercube (SLH) method, adjusted (
unless Correlate-s False is used) to yield variates whose true rank-correlation matrix R
approximates T. Alternative methods may be specified with SimMethod -LatinHypercube (-LH) or -
Random (-U,-Uniform). If the first argument is entered as n for n>0, then cdf(s) are assumed
to be n standard normal cdfs and T=R is the actual product-moment correlation matrix. Note
that unless Correlate-sFalse, nsim must be >n. Use Report-False to suppress the Jennrich-
function report comparing T vs.R (suppressed by default for normal variates, for which T=R),
or use Report-Append to append R and {chi2, df, pval} from this report to the output (
see Jennrich). Use SimIn- mymatrix (SimQut-True) to use an input (output the ;
simulated) rank-matrix. Use TestCdf-False to save time if CAfQ[cdf]==True for each input cdf.

? StandardizeCdf

StandardizeCdf([incdf, Values, options:] returns a new cdf based on linear interpolation of
incdf (any cdf or cmf) evaluated at Values, where Values are assumed to be probability values,
except that Values are treated as cdf abcissa values if any of the Values are <0 or »>1 or if
the option ProbabilityValuess False is used. Values must be either a list or an integer>0; in
the latter case cdf-evaluation occurs in n equal increments over the specified range of
probability or abcissa values. If the Midpoints-True option is used, then cdf-evaluation occurs
at the midpoints of the successive element-pairs in the specified set of values, rather than
at those values themselves. If incdf is a list of cdfs, then a corresponding list of
standardized cdfs is output. Use TestCdf-False to suppress automatic CdfQ test of input cdfs.

? TBL

TBL[x] = TableForm[x, TableSpacing->1]. TBL[x,n] = TableForm{x, TableSpacing->n].
TBL{x.,n,r] = TableForm[Take[x,r], TableSpacing->n].

?WriteMatrix

WriteMatrix[filenameString, dataMatrix, separatorString] writes a data matrix to the
specified filename as an ASCII file. The separatorString is a tab by default.
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m Other Functions

? LSMin

LSMin(x,y.p,fxp,options] Attempts to reduce x2, i.e., the chi-square (i.e., weighted sum of
squared residuals) between a list y of data and a user-defined function fxp[x,P] of
corresponding independent-values x and parameters P, starting with the initially guessed
parameter list p, returning {phat,sd, {x2,df,p}} where phat is the list of asymptotic maximum-
likelihood parameter-value estimates, sd is the corresponding list of standard deviations (or
the full covariance matrix if Output->CVM is used), x2 is the goodness-of-fit chi-square
value, df=(Lengthl[y] - # est. parameters), and p is the corresponding p-value. Use NYatX->ny
if the y-values are the means of (a list of) ny corresponding values, with corresponding
standard deviations sdy all 1 (unless SDY->sy is used). It is assumed that yj~N{Eyj,Sqrtiv/
wjl) with wj=1 by default (and v = mean square of y-residuals if KnownVariances-> False is
used, in which case p is meaningless; otherwise v=1). Use Weights->wj to specify weights wi.
Use Weights->{Wyhat, vhat, df} to specify wj=(Wyhat| yhat=y(xj)) for Wyhat an expression (or
list of n expressions each) involving the symbol yhat, in which cases the fit is obtained by
iterative reweighting. If weights are not specified, KnownVariances-> False is assumed. Use
Parameters-> pinlist with ordered integer index-list pinlist to restrict optimization to a
subset of p specified by pinlist. The search stops if reductions in chi-square become less
than tol=0.001 (reset using Tolerance->tol) or if iterations > maxit=100 (reset using Maxit->
maxit; output appended with ‘'Warning'). Set Progress->True to see intermediate output (at
precision p using SeePrecision-> p). Levenberg-Marquardt minimization of the chi-square
objective function is used (WH Press et al., Numerical Recipies, Cambridge U. Press, New York,
1986, pp. 521-528), with shifts at each step having a relative size equal to 1000 (reset
using Step->size). In the case of unknown sigy, generalized (i.e., iteratively reweighted) x2-
mininization is performed (see Carrol and Rupert, Transformation and Weighting in
Regression, Chapman and Hall, New York, 1988). Needs MargCof, Partial, Bracket,

ParaMin, and Mathematica's CDF and ChiSquareDistribution functions.

7 MSDx

MSDx[GMx,GSDx] returns the arithmetic mean and arithmetic sdandard deviation of a
lognormal variate X that also has the specified geometric mean GMx and geometric
sdandard deviation GSDx, based on the method of moments.

? GMGSDx

GMGSDx[Mx, SDx] returns the geometric mean and geometric sdandard deviation of a
lognormal variate X that also has the specified arithmetic mean Mx and arithmetic
sdandard deviation SDx, based on the method of moments.

? GMGSDx1

GMGSDx1{cvWant,cv2] returns the GM and GSD of a lognormal variate X1, such that the
product X1+X2 has the desired coefficient of variation (CV) = cvWant, conditional
on the lognormal variate X2 having an arithmetic mean and CV equal to 1 and cv2,
respectively, based on the method of moments. '

17



